Human Fall Detection using Transfer Learning-based 3D CNN
- URL: http://arxiv.org/abs/2506.03193v1
- Date: Sat, 31 May 2025 16:58:12 GMT
- Title: Human Fall Detection using Transfer Learning-based 3D CNN
- Authors: Ekram Alam, Abu Sufian, Paramartha Dutta, Marco Leo,
- Abstract summary: Unintentional or accidental falls are one of the significant health issues in senior persons.<n>This paper introduces a vision-based fall detection system using a pre-trained 3D CNN.
- Score: 2.744898351429077
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Unintentional or accidental falls are one of the significant health issues in senior persons. The population of senior persons is increasing steadily. So, there is a need for an automated fall detection monitoring system. This paper introduces a vision-based fall detection system using a pre-trained 3D CNN. Unlike 2D CNN, 3D CNN extracts not only spatial but also temporal features. The proposed model leverages the original learned weights of a 3D CNN model pre-trained on the Sports1M dataset to extract the spatio-temporal features. Only the SVM classifier was trained, which saves the time required to train the 3D CNN. Stratified shuffle five split cross-validation has been used to split the dataset into training and testing data. Extracted features from the proposed 3D CNN model were fed to an SVM classifier to classify the activity as fall or ADL. Two datasets, GMDCSA and CAUCAFall, were utilized to conduct the experiment. The source code for this work can be accessed via the following link: https://github.com/ekramalam/HFD_3DCNN.
Related papers
- Video Pretraining Advances 3D Deep Learning on Chest CT Tasks [63.879848037679224]
Pretraining on large natural image classification datasets has aided model development on data-scarce 2D medical tasks.
These 2D models have been surpassed by 3D models on 3D computer vision benchmarks.
We show video pretraining for 3D models can enable higher performance on smaller datasets for 3D medical tasks.
arXiv Detail & Related papers (2023-04-02T14:46:58Z) - Intelligent 3D Network Protocol for Multimedia Data Classification using
Deep Learning [0.0]
We implement Hybrid Deep Learning Architecture that combines STIP and 3D CNN features to enhance the performance of 3D videos effectively.
The results are compared with state-of-the-art frameworks from literature for action recognition on UCF101 with an accuracy of 95%.
arXiv Detail & Related papers (2022-07-23T12:24:52Z) - Keypoint Message Passing for Video-based Person Re-Identification [106.41022426556776]
Video-based person re-identification (re-ID) is an important technique in visual surveillance systems which aims to match video snippets of people captured by different cameras.
Existing methods are mostly based on convolutional neural networks (CNNs), whose building blocks either process local neighbor pixels at a time, or, when 3D convolutions are used to model temporal information, suffer from the misalignment problem caused by person movement.
In this paper, we propose to overcome the limitations of normal convolutions with a human-oriented graph method. Specifically, features located at person joint keypoints are extracted and connected as a spatial-temporal graph
arXiv Detail & Related papers (2021-11-16T08:01:16Z) - Contrastive Learning with Continuous Proxy Meta-Data for 3D MRI
Classification [1.714108629548376]
We propose to leverage continuous proxy metadata, in the contrastive learning framework, by introducing a new loss called y-Aware InfoNCE loss.
A 3D CNN model pre-trained on $104$ multi-site healthy brain MRI scans can extract relevant features for three classification tasks.
When fine-tuned, it also outperforms 3D CNN trained from scratch on these tasks, as well as state-of-the-art self-supervised methods.
arXiv Detail & Related papers (2021-06-16T14:17:04Z) - Continual 3D Convolutional Neural Networks for Real-time Processing of
Videos [93.73198973454944]
We introduce Continual 3D Contemporalal Neural Networks (Co3D CNNs)
Co3D CNNs process videos frame-by-frame rather than by clip by clip.
We show that Co3D CNNs initialised on the weights from preexisting state-of-the-art video recognition models reduce floating point operations for frame-wise computations by 10.0-12.4x while improving accuracy on Kinetics-400 by 2.3-3.8x.
arXiv Detail & Related papers (2021-05-31T18:30:52Z) - BreakingBED -- Breaking Binary and Efficient Deep Neural Networks by
Adversarial Attacks [65.2021953284622]
We study robustness of CNNs against white-box and black-box adversarial attacks.
Results are shown for distilled CNNs, agent-based state-of-the-art pruned models, and binarized neural networks.
arXiv Detail & Related papers (2021-03-14T20:43:19Z) - Would Mega-scale Datasets Further Enhance Spatiotemporal 3D CNNs? [18.95620388632382]
In the early era of deep neural networks, 2D CNNs have been better than 3D CNNs in the context of video recognition.
Recent studies revealed that 3D CNNs can outperform 2D CNNs trained on a large-scale video dataset.
arXiv Detail & Related papers (2020-04-10T09:44:19Z) - Disp R-CNN: Stereo 3D Object Detection via Shape Prior Guided Instance
Disparity Estimation [51.17232267143098]
We propose a novel system named Disp R-CNN for 3D object detection from stereo images.
We use a statistical shape model to generate dense disparity pseudo-ground-truth without the need of LiDAR point clouds.
Experiments on the KITTI dataset show that, even when LiDAR ground-truth is not available at training time, Disp R-CNN achieves competitive performance and outperforms previous state-of-the-art methods by 20% in terms of average precision.
arXiv Detail & Related papers (2020-04-07T17:48:45Z) - Human Activity Recognition using Multi-Head CNN followed by LSTM [1.8830374973687412]
This study presents a novel method to recognize human physical activities using CNN followed by LSTM.
By using the proposed method, we achieve state-of-the-art accuracy, which is comparable to traditional machine learning algorithms and other deep neural network algorithms.
arXiv Detail & Related papers (2020-02-21T14:29:59Z) - 2.75D: Boosting learning by representing 3D Medical imaging to 2D
features for small data [54.223614679807994]
3D convolutional neural networks (CNNs) have started to show superior performance to 2D CNNs in numerous deep learning tasks.
Applying transfer learning on 3D CNN is challenging due to a lack of publicly available pre-trained 3D models.
In this work, we proposed a novel 2D strategical representation of volumetric data, namely 2.75D.
As a result, 2D CNN networks can also be used to learn volumetric information.
arXiv Detail & Related papers (2020-02-11T08:24:19Z) - An Information-rich Sampling Technique over Spatio-Temporal CNN for
Classification of Human Actions in Videos [5.414308305392762]
We propose a novel scheme for human action recognition in videos, using a 3-dimensional Convolutional Neural Network (3D CNN) based classifier.
In this paper, a 3D CNN architecture is proposed to extract featuresweighted and follows Long Short-Term Memory (LSTM) to recognize human actions.
Experiments are performed with KTH and WEIZMANN human actions datasets, whereby it is shown to produce comparable results with the state-of-the-art techniques.
arXiv Detail & Related papers (2020-02-06T05:07:41Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.