Axiomatics of Restricted Choices by Linear Orders of Sets with Minimum as Fallback
- URL: http://arxiv.org/abs/2506.03315v1
- Date: Tue, 03 Jun 2025 19:03:12 GMT
- Title: Axiomatics of Restricted Choices by Linear Orders of Sets with Minimum as Fallback
- Authors: Kai Sauerwald, Kenneth Skiba, Eduardo Fermé, Thomas Meyer,
- Abstract summary: We study how linear orders can be employed to realise choice functions for which the set of potential choices is restricted.<n>We show that one can always construct a choice function via a linear order on sets of alternatives, even when a fallback value is encoded as the minimal element in the linear order.
- Score: 2.7898966850590625
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study how linear orders can be employed to realise choice functions for which the set of potential choices is restricted, i.e., the possible choice is not possible among the full powerset of all alternatives. In such restricted settings, constructing a choice function via a relation on the alternatives is not always possible. However, we show that one can always construct a choice function via a linear order on sets of alternatives, even when a fallback value is encoded as the minimal element in the linear order. The axiomatics of such choice functions are presented for the general case and the case of union-closed input restrictions. Restricted choice structures have applications in knowledge representation and reasoning, and here we discuss their applications for theory change and abstract argumentation.
Related papers
- Differentiating Choices via Commonality for Multiple-Choice Question Answering [54.04315943420376]
Multiple-choice question answering can provide valuable clues for choosing the right answer.
Existing models often rank each choice separately, overlooking the context provided by other choices.
We propose a novel model by differentiating choices through identifying and eliminating their commonality, called DCQA.
arXiv Detail & Related papers (2024-08-21T12:05:21Z) - Extending choice assessments to choice functions: An algorithm for computing the natural extension [45.238324742678124]
We study how to infer new choices from prior choices using the framework of choice functions.<n>In particular, we define the natural (most conservative) extension of a given choice assessment to a coherent choice function.
arXiv Detail & Related papers (2024-07-30T20:10:59Z) - Interactively Learning Preference Constraints in Linear Bandits [100.78514640066565]
We study sequential decision-making with known rewards and unknown constraints.
As an application, we consider learning constraints to represent human preferences in a driving simulation.
arXiv Detail & Related papers (2022-06-10T17:52:58Z) - Decision-making with E-admissibility given a finite assessment of
choices [64.29961886833972]
We study the implications for decision-making with E-admissibility.
We use the mathematical framework of choice functions to specify choices and rejections.
We provide an algorithm that computes this extension by solving linear feasibility problems.
arXiv Detail & Related papers (2022-04-15T11:46:00Z) - Choosing on Sequences [0.0]
We propose a new framework that considers choice from infinite sequences.
We show that bounded attention is due to the continuity of the choice functions with respect to a natural topology.
We introduce the notion of computability of a choice function using Turing machines and show that computable choice rules can be implemented by a finite automaton.
arXiv Detail & Related papers (2022-02-28T20:16:24Z) - Modularity in Reinforcement Learning via Algorithmic Independence in
Credit Assignment [79.5678820246642]
We show that certain action-value methods are more sample efficient than policy-gradient methods on transfer problems that require only sparse changes to a sequence of previously optimal decisions.
We generalize the recently proposed societal decision-making framework as a more granular formalism than the Markov decision process.
arXiv Detail & Related papers (2021-06-28T21:29:13Z) - Learning Choice Functions via Pareto-Embeddings [3.1410342959104725]
We consider the problem of learning to choose from a given set of objects, where each object is represented by a feature vector.
We propose a learning algorithm that minimizes a differentiable loss function suitable for this task.
arXiv Detail & Related papers (2020-07-14T09:34:44Z) - Infinite Feature Selection: A Graph-based Feature Filtering Approach [78.63188057505012]
We propose a filtering feature selection framework that considers subsets of features as paths in a graph.
Going to infinite allows to constrain the computational complexity of the selection process.
We show that Inf-FS behaves better in almost any situation, that is, when the number of features to keep are fixed a priori.
arXiv Detail & Related papers (2020-06-15T07:20:40Z) - Inference with Choice Functions Made Practical [1.1859913430860332]
We study how to infer new choices from previous choices in a conservative manner.
We use the theory of choice functions: a unifying mathematical framework for conservative decision making.
arXiv Detail & Related papers (2020-05-07T12:58:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.