Seed-Coder: Let the Code Model Curate Data for Itself
- URL: http://arxiv.org/abs/2506.03524v2
- Date: Thu, 05 Jun 2025 03:26:05 GMT
- Title: Seed-Coder: Let the Code Model Curate Data for Itself
- Authors: ByteDance Seed, Yuyu Zhang, Jing Su, Yifan Sun, Chenguang Xi, Xia Xiao, Shen Zheng, Anxiang Zhang, Kaibo Liu, Daoguang Zan, Tao Sun, Jinhua Zhu, Shulin Xin, Dong Huang, Yetao Bai, Lixin Dong, Chao Li, Jianchong Chen, Hanzhi Zhou, Yifan Huang, Guanghan Ning, Xierui Song, Jiaze Chen, Siyao Liu, Kai Shen, Liang Xiang, Yonghui Wu,
- Abstract summary: We introduce Seed-Coder, a series of open-source models of 8B size.<n>Our code pretraining data is produced by a model-centric data pipeline.<n>Seed-Coder achieves state-of-the-art results among open-source models of similar size.
- Score: 41.69830870792126
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Code data in large language model (LLM) pretraining is recognized crucial not only for code-related tasks but also for enhancing general intelligence of LLMs. Current open-source LLMs often heavily rely on human effort to produce their code pretraining data, such as employing hand-crafted filtering rules tailored to individual programming languages, or using human-annotated data to train quality filters. However, these approaches are inherently limited in scalability, prone to subjective biases, and costly to extend and maintain across diverse programming languages. To address these challenges, we introduce Seed-Coder, a series of open-source LLMs comprising base, instruct and reasoning models of 8B size, minimizing human involvement in data construction. Our code pretraining data is produced by a model-centric data pipeline, which predominantly leverages LLMs for scoring and filtering code data. The instruct model is further trained via supervised fine-tuning and preference optimization, and the reasoning model leverages Long-Chain-of-Thought (LongCoT) reinforcement learning to improve multi-step code reasoning. Seed-Coder achieves state-of-the-art results among open-source models of similar size and even surpasses some much larger models, demonstrating superior performance in code generation, code completion, code editing, code reasoning, and software engineering tasks.
Related papers
- OpenCoder: The Open Cookbook for Top-Tier Code Large Language Models [76.59316249991657]
Large language models (LLMs) for code have become indispensable in various domains, including code generation, reasoning tasks and agent systems.<n>While open-access code LLMs are increasingly approaching the performance levels of proprietary models, high-quality code LLMs remain limited.<n>We introduce OpenCoder, a top-tier code LLM that not only achieves performance comparable to leading models but also serves as an "open cookbook" for the research community.
arXiv Detail & Related papers (2024-11-07T17:47:25Z) - Crystal: Illuminating LLM Abilities on Language and Code [58.5467653736537]
We propose a pretraining strategy to enhance the integration of natural language and coding capabilities.
The resulting model, Crystal, demonstrates remarkable capabilities in both domains.
arXiv Detail & Related papers (2024-11-06T10:28:46Z) - AlchemistCoder: Harmonizing and Eliciting Code Capability by Hindsight Tuning on Multi-source Data [64.69872638349922]
We present AlchemistCoder, a series of Code LLMs with enhanced code generation and generalization capabilities fine-tuned on multi-source data.
We propose incorporating the data construction process into the fine-tuning data as code comprehension tasks, including instruction evolution, data filtering, and code review.
arXiv Detail & Related papers (2024-05-29T16:57:33Z) - Code Needs Comments: Enhancing Code LLMs with Comment Augmentation [91.52444946362547]
We introduce a novel data augmentation method that generates comments for existing code, coupled with a data filtering strategy that filters out code data poorly correlated with natural language.
We conducted experiments on three code-focused Large Language Models and observed consistent improvements in performance on two widely-used programming skill benchmarks.
arXiv Detail & Related papers (2024-02-20T13:56:38Z) - LLM-Assisted Code Cleaning For Training Accurate Code Generators [53.087019724256606]
We investigate data quality for code and find that making the code more structured and readable leads to improved code generation performance of the system.
We build a novel data-cleaning pipeline that uses these principles to transform existing programs.
We evaluate our approach on two challenging algorithmic code generation benchmarks and find that fine-tuning CodeLLaMa-7B improves the performance by up to 30% compared to fine-tuning on the original dataset.
arXiv Detail & Related papers (2023-11-25T02:45:50Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.