Beamforming and Resource Allocation for Delay Minimization in RIS-Assisted OFDM Systems
- URL: http://arxiv.org/abs/2506.03586v4
- Date: Thu, 24 Jul 2025 12:56:07 GMT
- Title: Beamforming and Resource Allocation for Delay Minimization in RIS-Assisted OFDM Systems
- Authors: Yu Ma, Xiao Li, Chongtao Guo, Le Liang, Michail Matthaiou, Shi Jin,
- Abstract summary: This paper investigates a joint beamforming and resource allocation problem in downlink reconfigurable intelligent surface (RIS)-assisted OFDM systems.<n>To effectively handle the mixed action space and reduce the state space dimensionality, a hybrid deep reinforcement learning (DRL) approach is proposed.<n>The proposed algorithm significantly reduces the average delay, enhances resource allocation efficiency, and achieves superior system robustness and fairness.
- Score: 38.71413228444903
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper investigates a joint beamforming and resource allocation problem in downlink reconfigurable intelligent surface (RIS)-assisted orthogonal frequency division multiplexing (OFDM) systems to minimize the average delay, where data packets for each user arrive at the base station (BS) stochastically. The sequential optimization problem is inherently a Markov decision process (MDP), thus falling within the remit of reinforcement learning. To effectively handle the mixed action space and reduce the state space dimensionality, a hybrid deep reinforcement learning (DRL) approach is proposed. Specifically, proximal policy optimization (PPO)-Theta is employed to optimize the RIS phase shift design, while PPO-N is responsible for subcarrier allocation decisions. The active beamforming at the BS is then derived from the jointly optimized RIS phase shifts and subcarrier allocation decisions. To further mitigate the curse of dimensionality associated with subcarrier allocation, a multi-agent strategy is introduced to optimize the subcarrier allocation indicators more efficiently. Moreover, to achieve more adaptive resource allocation and accurately capture the network dynamics, key factors closely related to average delay, such as the number of backlogged packets in buffers and current packet arrivals, are incorporated into the state space. Furthermore, a transfer learning framework is introduced to enhance the training efficiency and accelerate convergence. Simulation results demonstrate that the proposed algorithm significantly reduces the average delay, enhances resource allocation efficiency, and achieves superior system robustness and fairness compared to baseline methods.
Related papers
- Backscatter Device-aided Integrated Sensing and Communication: A Pareto Optimization Framework [59.30060797118097]
Integrated sensing and communication (ISAC) systems potentially encounter significant performance degradation in densely obstructed urban non-line-of-sight scenarios.<n>This paper proposes a backscatter approximation (BD)-assisted ISAC system, which leverages passive BDs naturally distributed in environments of enhancement.
arXiv Detail & Related papers (2025-07-12T17:11:06Z) - Efficient Split Federated Learning for Large Language Models over Communication Networks [45.02252893286613]
Fine-tuning pre-trained large language models (LLMs) in a distributed manner poses significant challenges on resource-constrained edge networks.<n>We propose SflLLM, a novel framework that integrates split federated learning with parameter-efficient fine-tuning techniques.<n>By leveraging model splitting and low-rank adaptation (LoRA), SflLLM reduces the computational burden on edge devices.
arXiv Detail & Related papers (2025-04-20T16:16:54Z) - Diffusion Model Based Resource Allocation Strategy in Ultra-Reliable Wireless Networked Control Systems [10.177917426690701]
Diffusion models are vastly used in generative AI, leveraging their capability to capture complex data distributions.
This paper introduces a novel diffusion model-based resource allocation strategy for Wireless Networked Control Systems.
The proposed approach is shown to outperform previously proposed Deep Reinforcement Learning (DRL) based approaches with close to optimal performance regarding total power consumption.
arXiv Detail & Related papers (2024-07-22T16:44:57Z) - Design Optimization of NOMA Aided Multi-STAR-RIS for Indoor Environments: A Convex Approximation Imitated Reinforcement Learning Approach [51.63921041249406]
Non-orthogonal multiple access (NOMA) enables multiple users to share the same frequency band, and simultaneously transmitting and reflecting reconfigurable intelligent surface (STAR-RIS)
deploying STAR-RIS indoors presents challenges in interference mitigation, power consumption, and real-time configuration.
A novel network architecture utilizing multiple access points (APs), STAR-RISs, and NOMA is proposed for indoor communication.
arXiv Detail & Related papers (2024-06-19T07:17:04Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Proactive Resilient Transmission and Scheduling Mechanisms for mmWave
Networks [29.17280879786624]
This paper aims to develop resilient transmission mechanisms to suitably distribute traffic across multiple paths in an arbitrary millimeter-wave (mmWave) network.
To achieve resilience to link failures, a state-of-the-art Soft Actor-Critic DRL, which adapts the information flow through the network, is investigated.
arXiv Detail & Related papers (2022-11-17T02:52:27Z) - Decentralized Federated Reinforcement Learning for User-Centric Dynamic
TFDD Control [37.54493447920386]
We propose a learning-based dynamic time-frequency division duplexing (D-TFDD) scheme to meet asymmetric and heterogeneous traffic demands.
We formulate the problem as a decentralized partially observable Markov decision process (Dec-POMDP)
In order to jointly optimize the global resources in a decentralized manner, we propose a federated reinforcement learning (RL) algorithm named Wolpertinger deep deterministic policy gradient (FWDDPG) algorithm.
arXiv Detail & Related papers (2022-11-04T07:39:21Z) - MIX-MAB: Reinforcement Learning-based Resource Allocation Algorithm for
LoRaWAN [6.22984202194369]
This paper focuses on improving the resource allocation algorithm in terms of packet delivery ratio (PDR)
We propose a resource allocation algorithm that enables the EDs to configure their transmission parameters in a distributed manner.
Numerical results show that the proposed solution performs better than the existing schemes in terms of convergence time and PDR.
arXiv Detail & Related papers (2022-06-07T15:50:05Z) - Collaborative Intelligent Reflecting Surface Networks with Multi-Agent
Reinforcement Learning [63.83425382922157]
Intelligent reflecting surface (IRS) is envisioned to be widely applied in future wireless networks.
In this paper, we investigate a multi-user communication system assisted by cooperative IRS devices with the capability of energy harvesting.
arXiv Detail & Related papers (2022-03-26T20:37:14Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Resource Allocation via Model-Free Deep Learning in Free Space Optical
Communications [119.81868223344173]
The paper investigates the general problem of resource allocation for mitigating channel fading effects in Free Space Optical (FSO) communications.
Under this framework, we propose two algorithms that solve FSO resource allocation problems.
arXiv Detail & Related papers (2020-07-27T17:38:51Z) - Optimization-driven Deep Reinforcement Learning for Robust Beamforming
in IRS-assisted Wireless Communications [54.610318402371185]
Intelligent reflecting surface (IRS) is a promising technology to assist downlink information transmissions from a multi-antenna access point (AP) to a receiver.
We minimize the AP's transmit power by a joint optimization of the AP's active beamforming and the IRS's passive beamforming.
We propose a deep reinforcement learning (DRL) approach that can adapt the beamforming strategies from past experiences.
arXiv Detail & Related papers (2020-05-25T01:42:55Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.