Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments
- URL: http://arxiv.org/abs/2506.03598v1
- Date: Wed, 04 Jun 2025 06:04:46 GMT
- Title: Auto prompt sql: a resource-efficient architecture for text-to-sql translation in constrained environments
- Authors: Zetong Tang, Qian Ma, Di Wu,
- Abstract summary: This paper introduces Auto Promptsql(AP-), a novel architecture designed to bridge the gap between resource-efficient small open-source models and the powerful capabilities of large closed-source models for Text-to- translation.
- Score: 6.2022166353084485
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Using the best Text-to-SQL methods in resource-constrained environments is challenging due to their reliance on resource-intensive open-source models. This paper introduces Auto Prompt SQL(AP-SQL), a novel architecture designed to bridge the gap between resource-efficient small open-source models and the powerful capabilities of large closed-source models for Text-to-SQL translation. Our method decomposes the task into schema filtering, retrieval-augmented text-to-SQL generation based on in-context examples, and prompt-driven schema linking and SQL generation. To improve schema selection accuracy, we fine-tune large language models. Crucially, we also explore the impact of prompt engineering throughout the process, leveraging Chain-of-Thought(CoT) and Graph-of-Thought(GoT) templates to significantly enhance the model's reasoning for accurate SQL generation. Comprehensive evaluations on the Spider benchmarks demonstrate the effectiveness of AP-SQL.
Related papers
- SchemaGraphSQL: Efficient Schema Linking with Pathfinding Graph Algorithms for Text-to-SQL on Large-Scale Databases [1.6544167074080365]
We present a zero-shot, training-free schema linking approach that first constructs a schema graph based on foreign key relations.<n>We apply classical path-finding algorithms and post-processing to identify the optimal sequence of tables and columns that should be joined.<n>Our method achieves state-of-the-art results on the BIRD benchmark, outperforming previous specialized, fine-tuned, and complex multi-step LLM-based approaches.
arXiv Detail & Related papers (2025-05-23T20:42:36Z) - RSL-SQL: Robust Schema Linking in Text-to-SQL Generation [51.00761167842468]
We propose a novel framework called RSL- that combines bidirectional schema linking, contextual information augmentation, binary selection strategy, and multi-turn self-correction.
benchmarks demonstrate that our approach achieves SOTA execution accuracy among open-source solutions, with 67.2% on BIRD and 87.9% on GPT-4ocorrection.
Our approach outperforms a series of GPT-4 based Text-to-Seek systems when adopting DeepSeek (much cheaper) with same intact prompts.
arXiv Detail & Related papers (2024-10-31T16:22:26Z) - MSc-SQL: Multi-Sample Critiquing Small Language Models For Text-To-SQL Translation [10.205010004198757]
Text-to-generation enables non-experts to interact with databases via natural language.<n>Recent advances on large closed-source models like GPT-4 present challenges in accessibility, privacy, and latency.<n>We focus on developing small, efficient, and open-source text-to-generation models.
arXiv Detail & Related papers (2024-10-16T18:03:24Z) - Synthesizing Text-to-SQL Data from Weak and Strong LLMs [68.69270834311259]
The capability gap between open-source and closed-source large language models (LLMs) remains a challenge in text-to- tasks.
We introduce a synthetic data approach that combines data produced by larger, more powerful models with error information data generated by smaller, not well-aligned models.
arXiv Detail & Related papers (2024-08-06T15:40:32Z) - RB-SQL: A Retrieval-based LLM Framework for Text-to-SQL [48.516004807486745]
Large language models (LLMs) with in-context learning have significantly improved the performance of text-to- task.
We propose RB-, a novel retrieval-based framework for in-context prompt engineering.
Experiment results demonstrate that our model achieves better performance than several competitive baselines on public datasets BIRD and Spider.
arXiv Detail & Related papers (2024-07-11T08:19:58Z) - RH-SQL: Refined Schema and Hardness Prompt for Text-to-SQL [1.734218686180302]
This paper introduces a method for Text-to- Execute based on Refined Execution Model and Hardness Prompt.
It reduces storage and training costs while maintaining performance.
Our experiments on the Spider dataset, specifically with large-scale LMs, achieved an exceptional accuracy (EX) of 82.6%.
arXiv Detail & Related papers (2024-06-13T14:04:34Z) - CHESS: Contextual Harnessing for Efficient SQL Synthesis [1.9506402593665235]
We introduce CHESS, a framework for efficient and scalable text-to- queries.
It comprises four specialized agents, each targeting one of the aforementioned challenges.
Our framework offers features that adapt to various deployment constraints.
arXiv Detail & Related papers (2024-05-27T01:54:16Z) - SQLPrompt: In-Context Text-to-SQL with Minimal Labeled Data [54.69489315952524]
"Prompt" is designed to improve the few-shot prompting capabilities of Text-to-LLMs.
"Prompt" outperforms previous approaches for in-context learning with few labeled data by a large margin.
We show that emphPrompt outperforms previous approaches for in-context learning with few labeled data by a large margin.
arXiv Detail & Related papers (2023-11-06T05:24:06Z) - SQL-PaLM: Improved Large Language Model Adaptation for Text-to-SQL (extended) [53.95151604061761]
This paper introduces the framework for enhancing Text-to- filtering using large language models (LLMs)
With few-shot prompting, we explore the effectiveness of consistency decoding with execution-based error analyses.
With instruction fine-tuning, we delve deep in understanding the critical paradigms that influence the performance of tuned LLMs.
arXiv Detail & Related papers (2023-05-26T21:39:05Z) - IGSQL: Database Schema Interaction Graph Based Neural Model for
Context-Dependent Text-to-SQL Generation [61.09660709356527]
We propose a database schema interaction graph encoder to utilize historicalal information of database schema items.
We evaluate our model on the benchmark SParC and Co datasets.
arXiv Detail & Related papers (2020-11-11T12:56:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.