Training Cross-Morphology Embodied AI Agents: From Practical Challenges to Theoretical Foundations
- URL: http://arxiv.org/abs/2506.03613v1
- Date: Wed, 04 Jun 2025 06:44:49 GMT
- Title: Training Cross-Morphology Embodied AI Agents: From Practical Challenges to Theoretical Foundations
- Authors: Shaoshan Liu, Fan Wang, Hongjun Zhou, Yuanfeng Wang,
- Abstract summary: This article shows that theoretical insight is essential for overcoming real-world engineering barriers.<n>We formalize the Heterogeneous Embodied Agent Training (HEAT) problem and prove it reduces to a structured Partially Observable Markov Decision Process (POMDP) that is PSPACE-complete.<n>We also explore Collective Adaptation, a distributed learning alternative inspired by biological systems.
- Score: 16.735655028118817
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While theory and practice are often seen as separate domains, this article shows that theoretical insight is essential for overcoming real-world engineering barriers. We begin with a practical challenge: training a cross-morphology embodied AI policy that generalizes across diverse robot morphologies. We formalize this as the Heterogeneous Embodied Agent Training (HEAT) problem and prove it reduces to a structured Partially Observable Markov Decision Process (POMDP) that is PSPACE-complete. This result explains why current reinforcement learning pipelines break down under morphological diversity, due to sequential training constraints, memory-policy coupling, and data incompatibility. We further explore Collective Adaptation, a distributed learning alternative inspired by biological systems. Though NEXP-complete in theory, it offers meaningful scalability and deployment benefits in practice. This work illustrates how computational theory can illuminate system design trade-offs and guide the development of more robust, scalable embodied AI. For practitioners and researchers to explore this problem, the implementation code of this work has been made publicly available at https://github.com/airs-admin/HEAT
Related papers
- The Generalist Brain Module: Module Repetition in Neural Networks in Light of the Minicolumn Hypothesis [0.0]
Review aims to synthesizing historical, theoretical, and methodological perspectives on neural module repetition.<n>We believe that a system that adopts the benefits of CI, while adhering to architectural and functional principles of the minicolumns, could challenge the modern AI problems of scalability, energy consumption, and democratization.
arXiv Detail & Related papers (2025-07-01T09:13:10Z) - Neural Network Reprogrammability: A Unified Theme on Model Reprogramming, Prompt Tuning, and Prompt Instruction [55.914891182214475]
We introduce neural network reprogrammability as a unifying framework for model adaptation.<n>We present a taxonomy that categorizes such information manipulation approaches across four key dimensions.<n>We also analyze remaining technical challenges and ethical considerations.
arXiv Detail & Related papers (2025-06-05T05:42:27Z) - On the Mistaken Assumption of Interchangeable Deep Reinforcement Learning Implementations [53.0667196725616]
Deep Reinforcement Learning (DRL) is a paradigm of artificial intelligence where an agent uses a neural network to learn which actions to take in a given environment.<n>DRL has recently gained traction from being able to solve complex environments like driving simulators, 3D robotic control, and multiplayer-online-battle-arena video games.<n>Numerous implementations of the state-of-the-art algorithms responsible for training these agents, like the Deep Q-Network (DQN) and Proximal Policy Optimization (PPO) algorithms, currently exist.
arXiv Detail & Related papers (2025-03-28T16:25:06Z) - Synthesizing world models for bilevel planning [46.21010194281677]
Theory-based reinforcement learning (TBRL) is an algorithmic framework specifically designed to address this gap.<n>TBRL exploits hierarchical representations of theories and efficient program synthesis methods for more powerful learning and planning.<n>We demonstrate that this approach can be successfully applied to diverse and challenging grid-world games, where approaches based on directly synthesizing a policy perform poorly.
arXiv Detail & Related papers (2025-03-26T00:10:01Z) - Vintix: Action Model via In-Context Reinforcement Learning [72.65703565352769]
We present the first steps toward scaling ICRL by introducing a fixed, cross-domain model capable of learning behaviors through in-context reinforcement learning.<n>Our results demonstrate that Algorithm Distillation, a framework designed to facilitate ICRL, offers a compelling and competitive alternative to expert distillation to construct versatile action models.
arXiv Detail & Related papers (2025-01-31T18:57:08Z) - Causality-Aware Transformer Networks for Robotic Navigation [13.719643934968367]
Current research in Visual Navigation reveals opportunities for improvement.
Direct adoption of RNNs and Transformers often overlooks the specific differences between Embodied AI and traditional sequential data modelling.
We propose Causality-Aware Transformer (CAT) Networks for Navigation, featuring a Causal Understanding Module.
arXiv Detail & Related papers (2024-09-04T12:53:26Z) - Identifiable Causal Representation Learning: Unsupervised, Multi-View, and Multi-Environment [10.814585613336778]
Causal representation learning aims to combine the core strengths of machine learning and causality.
This thesis investigates what is possible for CRL without direct supervision, and thus contributes to its theoretical foundations.
arXiv Detail & Related papers (2024-06-19T09:14:40Z) - Hierarchical Invariance for Robust and Interpretable Vision Tasks at Larger Scales [54.78115855552886]
We show how to construct over-complete invariants with a Convolutional Neural Networks (CNN)-like hierarchical architecture.
With the over-completeness, discriminative features w.r.t. the task can be adaptively formed in a Neural Architecture Search (NAS)-like manner.
For robust and interpretable vision tasks at larger scales, hierarchical invariant representation can be considered as an effective alternative to traditional CNN and invariants.
arXiv Detail & Related papers (2024-02-23T16:50:07Z) - Pangu-Agent: A Fine-Tunable Generalist Agent with Structured Reasoning [50.47568731994238]
Key method for creating Artificial Intelligence (AI) agents is Reinforcement Learning (RL)
This paper presents a general framework model for integrating and learning structured reasoning into AI agents' policies.
arXiv Detail & Related papers (2023-12-22T17:57:57Z) - Explainable Reinforcement Learning: A Survey [0.0]
Explainable Artificial Intelligence (XAI) has gained increased traction over the last few years.
XAI models exhibit one detrimential characteristic: a performance-transparency trade-off.
This survey attempts to address this gap by offering an overview of Explainable Reinforcement Learning (XRL) methods.
arXiv Detail & Related papers (2020-05-13T10:52:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.