RadialRouter: Structured Representation for Efficient and Robust Large Language Models Routing
- URL: http://arxiv.org/abs/2506.03880v1
- Date: Wed, 04 Jun 2025 12:16:41 GMT
- Title: RadialRouter: Structured Representation for Efficient and Robust Large Language Models Routing
- Authors: Ruihan Jin, Pengpeng Shao, Zhengqi Wen, Jinyang Wu, Mingkuan Feng, Shuai Zhang, Jianhua Tao,
- Abstract summary: Radial is a novel framework for large language models routing.<n>It uses a lightweight Transformer-based backbone with a radial structure named RadialFormer to articulate the query-LLMs relationship.<n>It significantly outperforms existing routing methods by 9.2% and 5.8% in the Balance and Cost First scenarios.
- Score: 31.446419903916425
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid advancements in large language models (LLMs) have led to the emergence of routing techniques, which aim to efficiently select the optimal LLM from diverse candidates to tackle specific tasks, optimizing performance while reducing costs. Current LLM routing methods are limited in effectiveness due to insufficient exploration of the intrinsic connection between user queries and the characteristics of LLMs. To address this issue, in this paper, we present RadialRouter, a novel framework for LLM routing which employs a lightweight Transformer-based backbone with a radial structure named RadialFormer to articulate the query-LLMs relationship. The optimal LLM selection is performed based on the final states of RadialFormer. The pipeline is further refined by an objective function that combines Kullback-Leibler divergence with the query-query contrastive loss to enhance robustness. Experimental results on RouterBench show that RadialRouter significantly outperforms existing routing methods by 9.2\% and 5.8\% in the Balance and Cost First scenarios, respectively. Additionally, its adaptability toward different performance-cost trade-offs and the dynamic LLM pool demonstrates practical application potential.
Related papers
- RCR-Router: Efficient Role-Aware Context Routing for Multi-Agent LLM Systems with Structured Memory [57.449129198822476]
RCR is a role-aware context routing framework for multi-agent large language model (LLM) systems.<n>It dynamically selects semantically relevant memory subsets for each agent based on its role and task stage.<n>A lightweight scoring policy guides memory selection, and agent outputs are integrated into a shared memory store.
arXiv Detail & Related papers (2025-08-06T21:59:34Z) - Router-R1: Teaching LLMs Multi-Round Routing and Aggregation via Reinforcement Learning [12.878608250420832]
We present textbf generalization-R1, a reinforcement learning framework that formulates multi-LLM routing and aggregation as a sequential decision process.<n>To facilitate learning, we employ a lightweight rule-based reward comprising format rewards, final outcome rewards, and a novel cost reward for optimizing the balance between performance and cost.
arXiv Detail & Related papers (2025-06-10T17:56:45Z) - IRT-Router: Effective and Interpretable Multi-LLM Routing via Item Response Theory [26.39979967537193]
Large language models (LLMs) have demonstrated exceptional performance across a wide range of natural language tasks.<n>While powerful models deliver better results, they come at a high cost, whereas smaller models are more cost-effective but less capable.<n>We propose IRT-Merci, a multi-LLM routing framework that efficiently routes user queries to the most suitable LLM.
arXiv Detail & Related papers (2025-06-01T15:14:58Z) - Query Routing for Retrieval-Augmented Language Models [38.05904245087491]
Retrieval-Augmented Generation (RAG) significantly improves the performance of Large Language Models (LLMs) on knowledge-intensive tasks.<n>We observe that external documents dynamically affect LLM's ability to answer queries, while existing routing methods exhibit suboptimal performance in RAG scenarios.<n>We propose RAG, a parametric RAG-aware routing design, which leverages document embeddings and RAG capability embeddings with contrastive learning to capture knowledge representation shifts.
arXiv Detail & Related papers (2025-05-29T03:44:56Z) - Learning to Route Queries Across Knowledge Bases for Step-wise Retrieval-Augmented Reasoning [60.84901522792042]
Multimodal Retrieval-Augmented Generation (MRAG) has shown promise in mitigating hallucinations in Multimodal Large Language Models (MLLMs)<n>We propose R1, a novel MRAG framework that learns to decide when and where to retrieve knowledge based on the evolving reasoning state.<n>R1- can adaptively and effectively leverage diverse KBs, reducing unnecessary retrievals and improving both efficiency and accuracy.
arXiv Detail & Related papers (2025-05-28T08:17:57Z) - OmniRouter: Budget and Performance Controllable Multi-LLM Routing [31.60019342381251]
Large language models (LLMs) deliver superior performance but require substantial computational resources and operate with relatively low efficiency.<n>We introduce Omni, a controllable routing framework for multi-LLM serving.<n>Experiments show that Omni achieves up to 6.30% improvement in response accuracy while simultaneously reducing computational costs by at least 10.15%.
arXiv Detail & Related papers (2025-02-27T22:35:31Z) - Universal Model Routing for Efficient LLM Inference [72.65083061619752]
We consider the problem of dynamic routing, where new, previously unobserved LLMs are available at test time.<n>We propose a new approach to this problem that relies on representing each LLM as a feature vector, derived based on predictions on a set of representative prompts.<n>We prove that these strategies are estimates of a theoretically optimal routing rule, and provide an excess risk bound to quantify their errors.
arXiv Detail & Related papers (2025-02-12T20:30:28Z) - Confident or Seek Stronger: Exploring Uncertainty-Based On-device LLM Routing From Benchmarking to Generalization [61.02719787737867]
Large language models (LLMs) are increasingly deployed and democratized on edge devices.<n>One promising solution is uncertainty-based SLM routing, offloading high-stakes queries to stronger LLMs when resulting in low-confidence responses on SLM.<n>We conduct a comprehensive investigation into benchmarking and generalization of uncertainty-driven routing strategies from SLMs to LLMs over 1500+ settings.
arXiv Detail & Related papers (2025-02-06T18:59:11Z) - CITER: Collaborative Inference for Efficient Large Language Model Decoding with Token-Level Routing [56.98081258047281]
Collaborative Inference with Token-lEvel Routing (CITER) is a framework that enables efficient collaboration between small and large language models.<n>We formulate router training as a policy optimization, where the router receives rewards based on both the quality of predictions and the inference costs of generation.<n>Our experiments show that CITER reduces the inference costs while preserving high-quality generation, offering a promising solution for real-time and resource-constrained applications.
arXiv Detail & Related papers (2025-02-04T03:36:44Z) - PickLLM: Context-Aware RL-Assisted Large Language Model Routing [0.5325390073522079]
PickLLM is a lightweight framework that relies on Reinforcement Learning (RL) to route on-the-fly queries to available models.<n>We demonstrate the speed of convergence for different learning rates and improvement in hard metrics such as cost per querying session and overall response latency.
arXiv Detail & Related papers (2024-12-12T06:27:12Z) - Optimization-driven Machine Learning for Intelligent Reflecting Surfaces
Assisted Wireless Networks [82.33619654835348]
Intelligent surface (IRS) has been employed to reshape the wireless channels by controlling individual scattering elements' phase shifts.
Due to the large size of scattering elements, the passive beamforming is typically challenged by the high computational complexity.
In this article, we focus on machine learning (ML) approaches for performance in IRS-assisted wireless networks.
arXiv Detail & Related papers (2020-08-29T08:39:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.