Identifying Alzheimer's Disease Prediction Strategies of Convolutional Neural Network Classifiers using R2* Maps and Spectral Clustering
- URL: http://arxiv.org/abs/2506.03890v1
- Date: Wed, 04 Jun 2025 12:35:24 GMT
- Title: Identifying Alzheimer's Disease Prediction Strategies of Convolutional Neural Network Classifiers using R2* Maps and Spectral Clustering
- Authors: Christian Tinauer, Maximilian Sackl, Stefan Ropele, Christian Langkammer,
- Abstract summary: Deep learning models have shown strong performance in classifying Alzheimer's disease (AD) from R2* maps.<n>Previous studies suggest biases in model decisions, necessitating further analysis.<n>We trained a 3D convolutional neural network on R2* maps, generating relevance heatmaps via LRP and applied spectral clustering to identify dominant patterns.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning models have shown strong performance in classifying Alzheimer's disease (AD) from R2* maps, but their decision-making remains opaque, raising concerns about interpretability. Previous studies suggest biases in model decisions, necessitating further analysis. This study uses Layer-wise Relevance Propagation (LRP) and spectral clustering to explore classifier decision strategies across preprocessing and training configurations using R2* maps. We trained a 3D convolutional neural network on R2* maps, generating relevance heatmaps via LRP and applied spectral clustering to identify dominant patterns. t-Stochastic Neighbor Embedding (t-SNE) visualization was used to assess clustering structure. Spectral clustering revealed distinct decision patterns, with the relevance-guided model showing the clearest separation between AD and normal control (NC) cases. The t-SNE visualization confirmed that this model aligned heatmap groupings with the underlying subject groups. Our findings highlight the significant impact of preprocessing and training choices on deep learning models trained on R2* maps, even with similar performance metrics. Spectral clustering offers a structured method to identify classification strategy differences, emphasizing the importance of explainability in medical AI.
Related papers
- Gradient Attention Map Based Verification of Deep Convolutional Neural Networks with Application to X-ray Image Datasets [1.0208529247755187]
We propose a comprehensive verification framework that evaluates model suitability through multiple complementary strategies.<n>First, we introduce a Gradient Attention Map (GAM)-based approach that analyzes attention patterns using Grad-CAM.<n>Second, we extend verification to early convolutional feature maps, capturing structural mis-alignments missed by attention alone.<n>Third, we incorporate an additional garbage class into the classification model to explicitly reject out-of-distribution inputs.
arXiv Detail & Related papers (2025-04-29T23:41:37Z) - PathSegDiff: Pathology Segmentation using Diffusion model representations [63.20694440934692]
We propose PathSegDiff, a novel approach for histopathology image segmentation that leverages Latent Diffusion Models (LDMs) as pre-trained featured extractors.<n>Our method utilizes a pathology-specific LDM, guided by a self-supervised encoder, to extract rich semantic information from H&E stained histopathology images.<n>Our experiments demonstrate significant improvements over traditional methods on the BCSS and GlaS datasets.
arXiv Detail & Related papers (2025-04-09T14:58:21Z) - FORCE: Feature-Oriented Representation with Clustering and Explanation [0.0]
We propose a SHAP based supervised deep learning framework FORCE.<n>It relies on two-stage usage of SHAP values in the neural network architecture.<n>We show that FORCE led to dramatic improvements in overall performance as compared to networks that did not incorporate the latent feature and attention framework.
arXiv Detail & Related papers (2025-04-07T22:05:50Z) - Development of Interpretable Machine Learning Models to Detect
Arrhythmia based on ECG Data [0.0]
This thesis builds Convolutional Neural Network (CNN) and Long Short-Term Memory (LSTM) classifiers based on state-of-the-art models.
Both global and local interpretability methods are exploited to understand the interaction between dependent and independent variables.
It was found that Grad-Cam was the most effective interpretability technique at explaining predictions of proposed CNN and LSTM models.
arXiv Detail & Related papers (2022-05-05T17:29:33Z) - Dynamically-Scaled Deep Canonical Correlation Analysis [77.34726150561087]
Canonical Correlation Analysis (CCA) is a method for feature extraction of two views by finding maximally correlated linear projections of them.
We introduce a novel dynamic scaling method for training an input-dependent canonical correlation model.
arXiv Detail & Related papers (2022-03-23T12:52:49Z) - Improving Classification Model Performance on Chest X-Rays through Lung
Segmentation [63.45024974079371]
We propose a deep learning approach to enhance abnormal chest x-ray (CXR) identification performance through segmentations.
Our approach is designed in a cascaded manner and incorporates two modules: a deep neural network with criss-cross attention modules (XLSor) for localizing lung region in CXR images and a CXR classification model with a backbone of a self-supervised momentum contrast (MoCo) model pre-trained on large-scale CXR data sets.
arXiv Detail & Related papers (2022-02-22T15:24:06Z) - Spatial machine-learning model diagnostics: a model-agnostic
distance-based approach [91.62936410696409]
This contribution proposes spatial prediction error profiles (SPEPs) and spatial variable importance profiles (SVIPs) as novel model-agnostic assessment and interpretation tools.
The SPEPs and SVIPs of geostatistical methods, linear models, random forest, and hybrid algorithms show striking differences and also relevant similarities.
The novel diagnostic tools enrich the toolkit of spatial data science, and may improve ML model interpretation, selection, and design.
arXiv Detail & Related papers (2021-11-13T01:50:36Z) - A multi-stage machine learning model on diagnosis of esophageal
manometry [50.591267188664666]
The framework includes deep-learning models at the swallow-level stage and feature-based machine learning models at the study-level stage.
This is the first artificial-intelligence-style model to automatically predict CC diagnosis of HRM study from raw multi-swallow data.
arXiv Detail & Related papers (2021-06-25T20:09:23Z) - Deep adaptive fuzzy clustering for evolutionary unsupervised
representation learning [2.8028128734158164]
Cluster assignment of large and complex images is a crucial but challenging task in pattern recognition and computer vision.
We present a novel evolutionary unsupervised learning representation model with iterative optimization.
We jointly fuzzy clustering to the deep reconstruction model, in which fuzzy membership is utilized to represent a clear structure of deep cluster assignments.
arXiv Detail & Related papers (2021-03-31T13:58:10Z) - Cluster Activation Mapping with Applications to Medical Imaging [4.98888193036705]
We developed methodology to generate CLuster Activation Mapping (CLAM)
We applied it to 3D CT scans from a sarcoidosis population to identify new clusters of sarcoidosis based purely on CT scan presentation.
arXiv Detail & Related papers (2020-10-09T20:37:09Z) - Attention Model Enhanced Network for Classification of Breast Cancer
Image [54.83246945407568]
AMEN is formulated in a multi-branch fashion with pixel-wised attention model and classification submodular.
To focus more on subtle detail information, the sample image is enhanced by the pixel-wised attention map generated from former branch.
Experiments conducted on three benchmark datasets demonstrate the superiority of the proposed method under various scenarios.
arXiv Detail & Related papers (2020-10-07T08:44:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.