Weisfeiler and Leman Go Gambling: Why Expressive Lottery Tickets Win
- URL: http://arxiv.org/abs/2506.03919v1
- Date: Wed, 04 Jun 2025 13:10:59 GMT
- Title: Weisfeiler and Leman Go Gambling: Why Expressive Lottery Tickets Win
- Authors: Lorenz Kummer, Samir Moustafa, Anatol Ehrlich, Franka Bause, Nikolaus Suess, Wilfried N. Gansterer, Nils M. Kriege,
- Abstract summary: Lottery ticket hypothesis (LTH) is well-studied for convolutional neural networks but has been validated only empirically for graph neural networks (GNNs)<n>We identify the expressivity of sparseworks, i.e. their ability to distinguish non-isomorphic graphs, as crucial for finding winning tickets that preserve the predictive performance.<n>Our findings establish novel theoretical foundations for both LTH and GNN research, highlighting the importance of maintaining expressivity in sparsely GNNs.
- Score: 5.523076080195755
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The lottery ticket hypothesis (LTH) is well-studied for convolutional neural networks but has been validated only empirically for graph neural networks (GNNs), for which theoretical findings are largely lacking. In this paper, we identify the expressivity of sparse subnetworks, i.e. their ability to distinguish non-isomorphic graphs, as crucial for finding winning tickets that preserve the predictive performance. We establish conditions under which the expressivity of a sparsely initialized GNN matches that of the full network, particularly when compared to the Weisfeiler-Leman test, and in that context put forward and prove a Strong Expressive Lottery Ticket Hypothesis. We subsequently show that an increased expressivity in the initialization potentially accelerates model convergence and improves generalization. Our findings establish novel theoretical foundations for both LTH and GNN research, highlighting the importance of maintaining expressivity in sparsely initialized GNNs. We illustrate our results using examples from drug discovery.
Related papers
- Rethinking GNN Expressive Power from a Distributed Computational Model Perspective [21.723600297533835]
We argue that using well-defined computational models, such as a modified CONGEST model with clearly specified preprocessing and postprocessing, offers a more sound framework for analyzing GNN expressiveness.<n>We show that allowing unrestricted preprocessing or incorporating externally computed features, while claiming that these precomputations enhance the expressiveness, can sometimes lead to problems.<n>Despite these negative results, we also present positive results that characterize the effects of virtual nodes and edges from a computational model perspective.
arXiv Detail & Related papers (2024-10-02T08:01:50Z) - Generalization Limits of Graph Neural Networks in Identity Effects
Learning [12.302336258860116]
Graph Neural Networks (GNNs) have emerged as a powerful tool for data-driven learning on various graph domains.
We establish new generalization properties and fundamental limits of GNNs in the context of learning so-called identity effects.
Our study is motivated by the need to understand the capabilities of GNNs when performing simple cognitive tasks.
arXiv Detail & Related papers (2023-06-30T20:56:38Z) - Deep Graph Neural Networks via Posteriori-Sampling-based Node-Adaptive Residual Module [65.81781176362848]
Graph Neural Networks (GNNs) can learn from graph-structured data through neighborhood information aggregation.
As the number of layers increases, node representations become indistinguishable, which is known as over-smoothing.
We propose a textbfPosterior-Sampling-based, Node-distinguish Residual module (PSNR).
arXiv Detail & Related papers (2023-05-09T12:03:42Z) - On the Expressiveness and Generalization of Hypergraph Neural Networks [77.65788763444877]
This extended abstract describes a framework for analyzing the expressiveness, learning, and (structural) generalization of hypergraph neural networks (HyperGNNs)
Specifically, we focus on how HyperGNNs can learn from finite datasets and generalize structurally to graph reasoning problems of arbitrary input sizes.
arXiv Detail & Related papers (2023-03-09T18:42:18Z) - Explainability in subgraphs-enhanced Graph Neural Networks [12.526174412246107]
Subgraphs-enhanced Graph Neural Networks (SGNNs) have been introduced to enhance the expressive power of GNNs.
In this work, we adapt PGExplainer, one of the most recent explainers for GNNs, to SGNNs.
We show that our framework is successful in explaining the decision process of an SGNN on graph classification tasks.
arXiv Detail & Related papers (2022-09-16T13:39:10Z) - Ordered Subgraph Aggregation Networks [19.18478955240166]
Subgraph-enhanced graph neural networks (GNNs) have emerged, provably boosting the expressive power of standard (message-passing) GNNs.
Here, we introduce a theoretical framework and extend the known expressivity results of subgraph-enhanced GNNs.
We show that increasing subgraph size always increases the expressive power and develop a better understanding of their limitations.
arXiv Detail & Related papers (2022-06-22T15:19:34Z) - Generalizing Graph Neural Networks on Out-Of-Distribution Graphs [51.33152272781324]
Graph Neural Networks (GNNs) are proposed without considering the distribution shifts between training and testing graphs.
In such a setting, GNNs tend to exploit subtle statistical correlations existing in the training set for predictions, even though it is a spurious correlation.
We propose a general causal representation framework, called StableGNN, to eliminate the impact of spurious correlations.
arXiv Detail & Related papers (2021-11-20T18:57:18Z) - Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
on Pruned Neural Networks [79.74580058178594]
We analyze the performance of training a pruned neural network by analyzing the geometric structure of the objective function.
We show that the convex region near a desirable model with guaranteed generalization enlarges as the neural network model is pruned.
arXiv Detail & Related papers (2021-10-12T01:11:07Z) - The Surprising Power of Graph Neural Networks with Random Node
Initialization [54.4101931234922]
Graph neural networks (GNNs) are effective models for representation learning on relational data.
Standard GNNs are limited in their expressive power, as they cannot distinguish beyond the capability of the Weisfeiler-Leman graph isomorphism.
In this work, we analyze the expressive power of GNNs with random node (RNI)
We prove that these models are universal, a first such result for GNNs not relying on computationally demanding higher-order properties.
arXiv Detail & Related papers (2020-10-02T19:53:05Z) - How Neural Networks Extrapolate: From Feedforward to Graph Neural
Networks [80.55378250013496]
We study how neural networks trained by gradient descent extrapolate what they learn outside the support of the training distribution.
Graph Neural Networks (GNNs) have shown some success in more complex tasks.
arXiv Detail & Related papers (2020-09-24T17:48:59Z) - Improving Graph Neural Network Expressivity via Subgraph Isomorphism
Counting [63.04999833264299]
"Graph Substructure Networks" (GSN) is a topologically-aware message passing scheme based on substructure encoding.
We show that it is strictly more expressive than the Weisfeiler-Leman (WL) graph isomorphism test.
We perform an extensive evaluation on graph classification and regression tasks and obtain state-of-the-art results in diverse real-world settings.
arXiv Detail & Related papers (2020-06-16T15:30:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.