A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions
- URL: http://arxiv.org/abs/2506.04077v1
- Date: Wed, 04 Jun 2025 15:42:53 GMT
- Title: A Novel Data Augmentation Approach for Automatic Speaking Assessment on Opinion Expressions
- Authors: Chung-Chun Wang, Jhen-Ke Lin, Hao-Chien Lu, Hong-Yun Lin, Berlin Chen,
- Abstract summary: We propose a novel training paradigm to generate diverse responses of a given proficiency level.<n>We convert responses into synthesized speech via speaker-aware text-to-speech synthesis.<n>A multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly.
- Score: 3.505838221203969
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Automated speaking assessment (ASA) on opinion expressions is often hampered by the scarcity of labeled recordings, which restricts prompt diversity and undermines scoring reliability. To address this challenge, we propose a novel training paradigm that leverages a large language models (LLM) to generate diverse responses of a given proficiency level, converts responses into synthesized speech via speaker-aware text-to-speech synthesis, and employs a dynamic importance loss to adaptively reweight training instances based on feature distribution differences between synthesized and real speech. Subsequently, a multimodal large language model integrates aligned textual features with speech signals to predict proficiency scores directly. Experiments conducted on the LTTC dataset show that our approach outperforms methods relying on real data or conventional augmentation, effectively mitigating low-resource constraints and enabling ASA on opinion expressions with cross-modal information.
Related papers
- Synthetic Data Generation for Phrase Break Prediction with Large Language Model [5.483546934298434]
Large language models (LLMs) have shown success in addressing data challenges in NLP.<n>We explore leveraging LLM to generate synthetic phrase break annotations.<n>Our findings suggest that LLM-based synthetic data generation effectively mitigates data challenges in phrase break prediction.
arXiv Detail & Related papers (2025-07-24T02:45:03Z) - MSA-ASR: Efficient Multilingual Speaker Attribution with frozen ASR Models [59.80042864360884]
Speaker-attributed automatic speech recognition (SA-ASR) aims to transcribe speech while assigning transcripts to the corresponding speakers accurately.<n>This paper introduces a novel approach, leveraging a frozen multilingual ASR model to incorporate speaker attribution into the transcriptions.
arXiv Detail & Related papers (2024-11-27T09:01:08Z) - Speechworthy Instruction-tuned Language Models [71.8586707840169]
We show that both prompting and preference learning increase the speech-suitability of popular instruction-tuned LLMs.
We share lexical, syntactical, and qualitative analyses to showcase how each method contributes to improving the speech-suitability of generated responses.
arXiv Detail & Related papers (2024-09-23T02:34:42Z) - Learning Disentangled Speech Representations [0.412484724941528]
SynSpeech is a novel large-scale synthetic speech dataset designed to enable research on disentangled speech representations.<n>We present a framework to evaluate disentangled representation learning techniques, applying both linear probing and established supervised disentanglement metrics.<n>We find that SynSpeech facilitates benchmarking across a range of factors, achieving promising disentanglement of simpler features like gender and speaking style, while highlighting challenges in isolating complex attributes like speaker identity.
arXiv Detail & Related papers (2023-11-04T04:54:17Z) - Improved Contextual Recognition In Automatic Speech Recognition Systems
By Semantic Lattice Rescoring [4.819085609772069]
We propose a novel approach for enhancing contextual recognition within ASR systems via semantic lattice processing.
Our solution consists of using Hidden Markov Models and Gaussian Mixture Models (HMM-GMM) along with Deep Neural Networks (DNN) models for better accuracy.
We demonstrate the effectiveness of our proposed framework on the LibriSpeech dataset with empirical analyses.
arXiv Detail & Related papers (2023-10-14T23:16:05Z) - ASR data augmentation in low-resource settings using cross-lingual
multi-speaker TTS and cross-lingual voice conversion [49.617722668505834]
We show that our approach permits the application of speech synthesis and voice conversion to improve ASR systems using only one target-language speaker during model training.
It is possible to obtain promising ASR training results with our data augmentation method using only a single real speaker in a target language.
arXiv Detail & Related papers (2022-03-29T11:55:30Z) - Discretization and Re-synthesis: an alternative method to solve the
Cocktail Party Problem [65.25725367771075]
This study demonstrates, for the first time, that the synthesis-based approach can also perform well on this problem.
Specifically, we propose a novel speech separation/enhancement model based on the recognition of discrete symbols.
By utilizing the synthesis model with the input of discrete symbols, after the prediction of discrete symbol sequence, each target speech could be re-synthesized.
arXiv Detail & Related papers (2021-12-17T08:35:40Z) - Conversational speech recognition leveraging effective fusion methods
for cross-utterance language modeling [12.153618111267514]
We put forward disparate conversation history fusion methods for language modeling in automatic speech recognition.
A novel audio-fusion mechanism is introduced, which manages to fuse and utilize the acoustic embeddings of a current utterance and the semantic content of its corresponding conversation history.
To flesh out our ideas, we frame the ASR N-best hypothesis rescoring task as a prediction problem, leveraging BERT, an iconic pre-trained LM.
arXiv Detail & Related papers (2021-11-05T09:07:23Z) - LDNet: Unified Listener Dependent Modeling in MOS Prediction for
Synthetic Speech [67.88748572167309]
We present LDNet, a unified framework for mean opinion score (MOS) prediction.
We propose two inference methods that provide more stable results and efficient computation.
arXiv Detail & Related papers (2021-10-18T08:52:31Z) - Self-supervised Text-independent Speaker Verification using Prototypical
Momentum Contrastive Learning [58.14807331265752]
We show that better speaker embeddings can be learned by momentum contrastive learning.
We generalize the self-supervised framework to a semi-supervised scenario where only a small portion of the data is labeled.
arXiv Detail & Related papers (2020-12-13T23:23:39Z) - An Effective Contextual Language Modeling Framework for Speech
Summarization with Augmented Features [13.97006782398121]
Bidirectional Representations from Transformers (BERT) model was proposed and has achieved record-breaking success on many natural language processing tasks.
We explore the incorporation of confidence scores into sentence representations to see if such an attempt could help alleviate the negative effects caused by imperfect automatic speech recognition.
We validate the effectiveness of our proposed method on a benchmark dataset.
arXiv Detail & Related papers (2020-06-01T18:27:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.