Estimating properties of a homogeneous bounded soil using machine learning models
- URL: http://arxiv.org/abs/2506.04256v1
- Date: Mon, 02 Jun 2025 07:25:03 GMT
- Title: Estimating properties of a homogeneous bounded soil using machine learning models
- Authors: Konstantinos Kalimeris, Leonidas Mindrinos, Nikolaos Pallikarakis,
- Abstract summary: This work focuses on estimating soil properties from water moisture measurements.<n>We consider simulated data generated by solving the initial-boundary value problem governing vertical infiltration in a homogeneous, bounded soil profile.<n>To address the parameter identification problem, which is formulated as a two-output regression task, we explore various machine learning models.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: This work focuses on estimating soil properties from water moisture measurements. We consider simulated data generated by solving the initial-boundary value problem governing vertical infiltration in a homogeneous, bounded soil profile, with the usage of the Fokas method. To address the parameter identification problem, which is formulated as a two-output regression task, we explore various machine learning models. The performance of each model is assessed under different data conditions: full, noisy, and limited. Overall, the prediction of diffusivity $D$ tends to be more accurate than that of hydraulic conductivity $K.$ Among the models considered, Support Vector Machines (SVMs) and Neural Networks (NNs) demonstrate the highest robustness, achieving near-perfect accuracy and minimal errors.
Related papers
- Efficient Federated Learning with Heterogeneous Data and Adaptive Dropout [62.73150122809138]
Federated Learning (FL) is a promising distributed machine learning approach that enables collaborative training of a global model using multiple edge devices.<n>We propose the FedDHAD FL framework, which comes with two novel methods: Dynamic Heterogeneous model aggregation (FedDH) and Adaptive Dropout (FedAD)<n>The combination of these two methods makes FedDHAD significantly outperform state-of-the-art solutions in terms of accuracy (up to 6.7% higher), efficiency (up to 2.02 times faster), and cost (up to 15.0% smaller)
arXiv Detail & Related papers (2025-07-14T16:19:00Z) - Modeling of AUV Dynamics with Limited Resources: Efficient Online Learning Using Uncertainty [9.176056742068814]
This work investigates the use of uncertainty in the selection of data points to rehearse in online learning when storage capacity is constrained.<n>We present three novel approaches: the Threshold method, which excludes samples with uncertainty below a specified threshold, the Greedy method, designed to maximize uncertainty among the stored points, and Threshold-Greedy, which combines the previous two approaches.
arXiv Detail & Related papers (2025-04-06T18:48:55Z) - Denoising Score Distillation: From Noisy Diffusion Pretraining to One-Step High-Quality Generation [82.39763984380625]
We introduce denoising score distillation (DSD), a surprisingly effective and novel approach for training high-quality generative models from low-quality data.<n>DSD pretrains a diffusion model exclusively on noisy, corrupted samples and then distills it into a one-step generator capable of producing refined, clean outputs.
arXiv Detail & Related papers (2025-03-10T17:44:46Z) - Evaluating Deep Learning Approaches for Predictions in Unmonitored Basins with Continental-scale Stream Temperature Models [1.8067095934521364]
Recent machine learning (ML) models can harness vast datasets for accurate predictions at large spatial scales.
This study explores questions regarding model design and data needed for inputs and training to improve performance.
arXiv Detail & Related papers (2024-10-23T15:36:59Z) - Accelerated training of deep learning surrogate models for surface displacement and flow, with application to MCMC-based history matching of CO2 storage operations [0.0]
We introduce a new surrogate modeling framework to predict CO2 saturation, pressure and surface displacement for use in the history matching of carbon storage operations.
Training here involves a large number of inexpensive flow-only simulations combined with a much smaller number of coupled runs.
arXiv Detail & Related papers (2024-08-20T10:31:52Z) - Physics-informed machine learning with differentiable programming for
heterogeneous underground reservoir pressure management [64.17887333976593]
Avoiding over-pressurization in subsurface reservoirs is critical for applications like CO2 sequestration and wastewater injection.
Managing the pressures by controlling injection/extraction are challenging because of complex heterogeneity in the subsurface.
We use differentiable programming with a full-physics model and machine learning to determine the fluid extraction rates that prevent over-pressurization.
arXiv Detail & Related papers (2022-06-21T20:38:13Z) - Leveraging Unlabeled Data to Predict Out-of-Distribution Performance [63.740181251997306]
Real-world machine learning deployments are characterized by mismatches between the source (training) and target (test) distributions.
In this work, we investigate methods for predicting the target domain accuracy using only labeled source data and unlabeled target data.
We propose Average Thresholded Confidence (ATC), a practical method that learns a threshold on the model's confidence, predicting accuracy as the fraction of unlabeled examples.
arXiv Detail & Related papers (2022-01-11T23:01:12Z) - Inverting brain grey matter models with likelihood-free inference: a
tool for trustable cytoarchitecture measurements [62.997667081978825]
characterisation of the brain grey matter cytoarchitecture with quantitative sensitivity to soma density and volume remains an unsolved challenge in dMRI.
We propose a new forward model, specifically a new system of equations, requiring a few relatively sparse b-shells.
We then apply modern tools from Bayesian analysis known as likelihood-free inference (LFI) to invert our proposed model.
arXiv Detail & Related papers (2021-11-15T09:08:27Z) - Artificial Intelligence Hybrid Deep Learning Model for Groundwater Level
Prediction Using MLP-ADAM [0.0]
In this paper, a multi-layer perceptron is applied to simulate groundwater level.
The adaptive moment estimation algorithm is also used to this matter.
Results indicate that deep learning algorithms can demonstrate a high accuracy prediction.
arXiv Detail & Related papers (2021-07-29T10:11:45Z) - Evaluating State-of-the-Art Classification Models Against Bayes
Optimality [106.50867011164584]
We show that we can compute the exact Bayes error of generative models learned using normalizing flows.
We use our approach to conduct a thorough investigation of state-of-the-art classification models.
arXiv Detail & Related papers (2021-06-07T06:21:20Z) - Deep-learning-based coupled flow-geomechanics surrogate model for CO$_2$
sequestration [4.635171370680939]
The 3D recurrent R-U-Net model combines deep convolutional and recurrent neural networks to capture the spatial distribution and temporal evolution of saturation, pressure and surface displacement fields.
The surrogate model is trained to predict the 3D CO2 saturation and pressure fields in the storage aquifer, and 2D displacement maps at the Earth's surface.
arXiv Detail & Related papers (2021-05-04T07:34:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.