Automated Skill Discovery for Language Agents through Exploration and Iterative Feedback
- URL: http://arxiv.org/abs/2506.04287v2
- Date: Fri, 20 Jun 2025 03:16:30 GMT
- Title: Automated Skill Discovery for Language Agents through Exploration and Iterative Feedback
- Authors: Yongjin Yang, Sinjae Kang, Juyong Lee, Dongjun Lee, Se-Young Yun, Kimin Lee,
- Abstract summary: We propose an automatic skill discovery framework for large language models (LLM)<n>We employ an exploration-first strategy by employing an exploration agent (Alice) to train the target agent (Bob) to learn essential skills in the environment.<n>Experiments on Webshop and Crafter demonstrate EXIF's ability to effectively discover meaningful skills and iteratively expand the capabilities of the trained agent.
- Score: 44.66973406051031
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Training large language model (LLM) agents to acquire necessary skills and perform diverse tasks within an environment is gaining interest as a means to enable open-endedness. However, creating the training dataset for their skill acquisition faces several challenges. Manual trajectory collection requires significant human effort. Another approach, where LLMs directly propose tasks to learn, is often invalid, as the LLMs lack knowledge of which tasks are actually feasible. Moreover, the generated data may not provide a meaningful learning signal, as agents often already perform well on the proposed tasks. To address this, we propose a novel automatic skill discovery framework EXIF for LLM-powered agents, designed to improve the feasibility of generated target behaviors while accounting for the agents' capabilities. Our method adopts an exploration-first strategy by employing an exploration agent (Alice) to train the target agent (Bob) to learn essential skills in the environment. Specifically, Alice first interacts with the environment to retrospectively generate a feasible, environment-grounded skill dataset, which is then used to train Bob. Crucially, we incorporate an iterative feedback loop, where Alice evaluates Bob's performance to identify areas for improvement. This feedback then guides Alice's next round of exploration, forming a closed-loop data generation process. Experiments on Webshop and Crafter demonstrate EXIF's ability to effectively discover meaningful skills and iteratively expand the capabilities of the trained agent without any human intervention, achieving substantial performance improvements. Interestingly, we observe that setting Alice to the same model as Bob also notably improves performance, demonstrating EXIF's potential for building a self-evolving system.
Related papers
- MaskSearch: A Universal Pre-Training Framework to Enhance Agentic Search Capability [106.35604230971396]
Recent advancements in Agent techniques enable Large Language Models (LLMs) to autonomously utilize tools for retrieval, planning, and reasoning.<n>To further enhance the universal search capability of agents, we propose a novel pre-training framework, MaskSearch.<n>In the pre-training stage, we introduce the Retrieval Augmented Mask Prediction (RAMP) task, where the model learns to leverage search tools to fill masked spans.<n>After that, the model is trained on downstream tasks to achieve further improvement.
arXiv Detail & Related papers (2025-05-26T17:58:50Z) - KBAlign: Efficient Self Adaptation on Specific Knowledge Bases [73.34893326181046]
We present KBAlign, a self-supervised framework that enhances RAG systems through efficient model adaptation.<n>Our key insight is to leverage the model's intrinsic capabilities for knowledge alignment through two innovative mechanisms.<n> Experiments demonstrate that KBAlign can achieve 90% of the performance gain obtained through GPT-4-supervised adaptation.
arXiv Detail & Related papers (2024-11-22T08:21:03Z) - Agentic Skill Discovery [19.5703917813767]
Language-conditioned robotic skills make it possible to apply the high-level reasoning of Large Language Models (LLMs) to low-level robotic control.
A remaining challenge is to acquire a diverse set of fundamental skills.
We introduce a novel framework for skill discovery that is entirely driven by LLMs.
arXiv Detail & Related papers (2024-05-23T19:44:03Z) - Trial and Error: Exploration-Based Trajectory Optimization for LLM Agents [49.85633804913796]
We present an exploration-based trajectory optimization approach, referred to as ETO.
This learning method is designed to enhance the performance of open LLM agents.
Our experiments on three complex tasks demonstrate that ETO consistently surpasses baseline performance by a large margin.
arXiv Detail & Related papers (2024-03-04T21:50:29Z) - Empowering Large Language Model Agents through Action Learning [85.39581419680755]
Large Language Model (LLM) Agents have recently garnered increasing interest yet they are limited in their ability to learn from trial and error.
We argue that the capacity to learn new actions from experience is fundamental to the advancement of learning in LLM agents.
We introduce a framework LearnAct with an iterative learning strategy to create and improve actions in the form of Python functions.
arXiv Detail & Related papers (2024-02-24T13:13:04Z) - ExpeL: LLM Agents Are Experiential Learners [57.13685954854463]
We introduce the Experiential Learning (ExpeL) agent to allow learning from agent experiences without requiring parametric updates.<n>Our agent autonomously gathers experiences and extracts knowledge using natural language from a collection of training tasks.<n>At inference, the agent recalls its extracted insights and past experiences to make informed decisions.
arXiv Detail & Related papers (2023-08-20T03:03:34Z) - Choreographer: Learning and Adapting Skills in Imagination [60.09911483010824]
We present Choreographer, a model-based agent that exploits its world model to learn and adapt skills in imagination.
Our method decouples the exploration and skill learning processes, being able to discover skills in the latent state space of the model.
Choreographer is able to learn skills both from offline data, and by collecting data simultaneously with an exploration policy.
arXiv Detail & Related papers (2022-11-23T23:31:14Z) - Residual Skill Policies: Learning an Adaptable Skill-based Action Space
for Reinforcement Learning for Robotics [18.546688182454236]
Skill-based reinforcement learning (RL) has emerged as a promising strategy to leverage prior knowledge for accelerated robot learning.
We propose accelerating exploration in the skill space using state-conditioned generative models.
We validate our approach across four challenging manipulation tasks, demonstrating our ability to learn across task variations.
arXiv Detail & Related papers (2022-11-04T02:42:17Z) - Design of Negative Sampling Strategies for Distantly Supervised Skill
Extraction [19.43668931500507]
We propose an end-to-end system for skill extraction, based on distant supervision through literal matching.
We observe that using the ESCO taxonomy to select negative examples from related skills yields the biggest improvements.
We release the benchmark dataset for research purposes to stimulate further research on the task.
arXiv Detail & Related papers (2022-09-13T13:37:06Z) - ELSIM: End-to-end learning of reusable skills through intrinsic
motivation [0.0]
We present a novel reinforcement learning architecture which hierarchically learns and represents self-generated skills in an end-to-end way.
With this architecture, an agent focuses only on task-rewarded skills while keeping the learning process of skills bottom-up.
arXiv Detail & Related papers (2020-06-23T11:20:46Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.