KOALA++: Efficient Kalman-Based Optimization of Neural Networks with Gradient-Covariance Products
- URL: http://arxiv.org/abs/2506.04432v1
- Date: Wed, 04 Jun 2025 20:33:06 GMT
- Title: KOALA++: Efficient Kalman-Based Optimization of Neural Networks with Gradient-Covariance Products
- Authors: Zixuan Xia, Aram Davtyan, Paolo Favaro,
- Abstract summary: KOALA++ is a scalable Kalman-based optimization algorithm for neural network training.<n>It explicitly models structured uncertainty in neural network training.<n>It achieves accuracy on par or better than state-of-the-art first-order methods.
- Score: 19.802128119541077
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose KOALA++, a scalable Kalman-based optimization algorithm that explicitly models structured gradient uncertainty in neural network training. Unlike second-order methods, which rely on expensive second order gradient calculation, our method directly estimates the parameter covariance matrix by recursively updating compact gradient covariance products. This design improves upon the original KOALA framework that assumed diagonal covariance by implicitly capturing richer uncertainty structure without storing the full covariance matrix and avoiding large matrix inversions. Across diverse tasks, including image classification and language modeling, KOALA++ achieves accuracy on par or better than state-of-the-art first- and second-order optimizers while maintaining the efficiency of first-order methods.
Related papers
- A Gradient Meta-Learning Joint Optimization for Beamforming and Antenna Position in Pinching-Antenna Systems [63.213207442368294]
We consider a novel optimization design for multi-waveguide pinching-antenna systems.<n>The proposed GML-JO algorithm is robust to different choices and better performance compared with the existing optimization methods.
arXiv Detail & Related papers (2025-06-14T17:35:27Z) - Improving Adaptive Moment Optimization via Preconditioner Diagonalization [11.01832755213396]
We show that our approach can substantially enhance the convergence speed of modern adaptives.<n>For large language models like LLaMA, we can achieve a speedup of 2x compared to the baseline Adam.
arXiv Detail & Related papers (2025-02-11T11:48:04Z) - Efficient Second-Order Neural Network Optimization via Adaptive Trust Region Methods [0.0]
SecondOrderAdaptive (SOAA) is a novel optimization algorithm designed to overcome limitations of traditional second-order techniques.
We empirically demonstrate that SOAA achieves faster and more stable convergence compared to first-order approximations.
arXiv Detail & Related papers (2024-10-03T08:23:06Z) - An Alternative Graphical Lasso Algorithm for Precision Matrices [0.0]
We present a new/improved (dual-primal) DP-GLasso algorithm for estimating sparse precision matrices.
We show that the regularized normal log-likelihood naturally decouples into a sum of two easy to minimize convex functions one of which is a Lasso regression problem.
Our algorithm has the precision matrix as its optimization target right at the outset, and retains all the favorable properties of the DP-GLasso algorithm.
arXiv Detail & Related papers (2024-03-19T02:01:01Z) - SGD with Partial Hessian for Deep Neural Networks Optimization [18.78728272603732]
We propose a compound, which is a combination of a second-order with a precise partial Hessian matrix for updating channel-wise parameters and the first-order gradient descent (SGD) algorithms for updating the other parameters.
Compared with first-orders, it adopts a certain amount of information from the Hessian matrix to assist optimization, while compared with the existing second-order generalizations, it keeps the good performance of first-order generalizations imprecise.
arXiv Detail & Related papers (2024-03-05T06:10:21Z) - Fast Computation of Optimal Transport via Entropy-Regularized Extragradient Methods [75.34939761152587]
Efficient computation of the optimal transport distance between two distributions serves as an algorithm that empowers various applications.
This paper develops a scalable first-order optimization-based method that computes optimal transport to within $varepsilon$ additive accuracy.
arXiv Detail & Related papers (2023-01-30T15:46:39Z) - Cogradient Descent for Dependable Learning [64.02052988844301]
We propose a dependable learning based on Cogradient Descent (CoGD) algorithm to address the bilinear optimization problem.
CoGD is introduced to solve bilinear problems when one variable is with sparsity constraint.
It can also be used to decompose the association of features and weights, which further generalizes our method to better train convolutional neural networks (CNNs)
arXiv Detail & Related papers (2021-06-20T04:28:20Z) - Efficient Learning of Generative Models via Finite-Difference Score
Matching [111.55998083406134]
We present a generic strategy to efficiently approximate any-order directional derivative with finite difference.
Our approximation only involves function evaluations, which can be executed in parallel, and no gradient computations.
arXiv Detail & Related papers (2020-07-07T10:05:01Z) - Cogradient Descent for Bilinear Optimization [124.45816011848096]
We introduce a Cogradient Descent algorithm (CoGD) to address the bilinear problem.
We solve one variable by considering its coupling relationship with the other, leading to a synchronous gradient descent.
Our algorithm is applied to solve problems with one variable under the sparsity constraint.
arXiv Detail & Related papers (2020-06-16T13:41:54Z) - Effective Dimension Adaptive Sketching Methods for Faster Regularized
Least-Squares Optimization [56.05635751529922]
We propose a new randomized algorithm for solving L2-regularized least-squares problems based on sketching.
We consider two of the most popular random embeddings, namely, Gaussian embeddings and the Subsampled Randomized Hadamard Transform (SRHT)
arXiv Detail & Related papers (2020-06-10T15:00:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.