"Don't Do That!": Guiding Embodied Systems through Large Language Model-based Constraint Generation
- URL: http://arxiv.org/abs/2506.04500v1
- Date: Wed, 04 Jun 2025 22:47:53 GMT
- Title: "Don't Do That!": Guiding Embodied Systems through Large Language Model-based Constraint Generation
- Authors: Aladin Djuhera, Amin Seffo, Masataro Asai, Holger Boche,
- Abstract summary: Large language models (LLMs) have spurred interest in robotic navigation that incorporates complex constraints from natural language into the planning problem.<n>In this paper, we propose a constraint generation framework that uses LLMs to translate constraints into Python functions.<n>We show that these LLM-generated functions accurately describe even complex mathematical constraints, and apply them to point cloud representations with traditional search algorithms.
- Score: 40.61171036032532
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent advancements in large language models (LLMs) have spurred interest in robotic navigation that incorporates complex spatial, mathematical, and conditional constraints from natural language into the planning problem. Such constraints can be informal yet highly complex, making it challenging to translate into a formal description that can be passed on to a planning algorithm. In this paper, we propose STPR, a constraint generation framework that uses LLMs to translate constraints (expressed as instructions on ``what not to do'') into executable Python functions. STPR leverages the LLM's strong coding capabilities to shift the problem description from language into structured and transparent code, thus circumventing complex reasoning and avoiding potential hallucinations. We show that these LLM-generated functions accurately describe even complex mathematical constraints, and apply them to point cloud representations with traditional search algorithms. Experiments in a simulated Gazebo environment show that STPR ensures full compliance across several constraints and scenarios, while having short runtimes. We also verify that STPR can be used with smaller, code-specific LLMs, making it applicable to a wide range of compact models at low inference cost.
Related papers
- Syntactic and Semantic Control of Large Language Models via Sequential Monte Carlo [90.78001821963008]
A wide range of LM applications require generating text that conforms to syntactic or semantic constraints.<n>We develop an architecture for controlled LM generation based on sequential Monte Carlo (SMC)<n>Our system builds on the framework of Lew et al. (2023) and integrates with its language model probabilistic programming language.
arXiv Detail & Related papers (2025-04-17T17:49:40Z) - Pel, A Programming Language for Orchestrating AI Agents [1.223779595809275]
Pel is a novel programming language designed to bridge the gap between function/tool calling and direct code generation.<n>Inspired by the strengths of Lisp, Elixir, Gleam, and Haskell, Pel provides a syntactically simple, homoiconic, and semantically rich platform.<n>Key features include a powerful piping mechanism for linear composition, first-class closures enabling easy partial application and functional patterns, built-in support for natural language conditions evaluated by LLMs, and an advanced Read-Eval-Print-Loop (REPeL) with Common Lisp-style restarts and LLM-powered helper agents for automated
arXiv Detail & Related papers (2025-04-03T18:46:53Z) - Combining Constraint Programming Reasoning with Large Language Model Predictions [44.99833362998488]
Constraint Programming (CP) and Machine Learning (ML) face challenges in text generation.
This paper proposes a solution by combining both approaches and embedding a Large Language Model (LLM) in CP.
arXiv Detail & Related papers (2024-07-18T13:15:55Z) - Can Long-Context Language Models Subsume Retrieval, RAG, SQL, and More? [54.667202878390526]
Long-context language models (LCLMs) have the potential to revolutionize our approach to tasks traditionally reliant on external tools like retrieval systems or databases.
We introduce LOFT, a benchmark of real-world tasks requiring context up to millions of tokens designed to evaluate LCLMs' performance on in-context retrieval and reasoning.
Our findings reveal LCLMs' surprising ability to rival state-of-the-art retrieval and RAG systems, despite never having been explicitly trained for these tasks.
arXiv Detail & Related papers (2024-06-19T00:28:58Z) - Evaluating, Understanding, and Improving Constrained Text Generation for Large Language Models [49.74036826946397]
This study investigates constrained text generation for large language models (LLMs)
Our research mainly focuses on mainstream open-source LLMs, categorizing constraints into lexical, structural, and relation-based types.
Results illuminate LLMs' capacity and deficiency to incorporate constraints and provide insights for future developments in constrained text generation.
arXiv Detail & Related papers (2023-10-25T03:58:49Z) - Can Large Language Models Understand Real-World Complex Instructions? [54.86632921036983]
Large language models (LLMs) can understand human instructions, but struggle with complex instructions.
Existing benchmarks are insufficient to assess LLMs' ability to understand complex instructions.
We propose CELLO, a benchmark for evaluating LLMs' ability to follow complex instructions systematically.
arXiv Detail & Related papers (2023-09-17T04:18:39Z) - Simultaneous Machine Translation with Large Language Models [51.470478122113356]
We investigate the possibility of applying Large Language Models to SimulMT tasks.
We conducted experiments using the textttLlama2-7b-chat model on nine different languages from the MUST-C dataset.
The results show that LLM outperforms dedicated MT models in terms of BLEU and LAAL metrics.
arXiv Detail & Related papers (2023-09-13T04:06:47Z) - Dynamic Planning with a LLM [15.430182858130884]
Large Language Models (LLMs) can solve many NLP tasks in zero-shot settings, but applications involving embodied agents remain problematic.
Our work presents LLM Dynamic Planner (LLM-DP), a neuro-symbolic framework where an LLM works hand-in-hand with a traditional planner to solve an embodied task.
arXiv Detail & Related papers (2023-08-11T21:17:13Z) - Low-code LLM: Graphical User Interface over Large Language Models [115.08718239772107]
This paper introduces a novel human-LLM interaction framework, Low-code LLM.
It incorporates six types of simple low-code visual programming interactions to achieve more controllable and stable responses.
We highlight three advantages of the low-code LLM: user-friendly interaction, controllable generation, and wide applicability.
arXiv Detail & Related papers (2023-04-17T09:27:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.