Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
- URL: http://arxiv.org/abs/2506.04598v1
- Date: Thu, 05 Jun 2025 03:35:59 GMT
- Title: Scaling Laws for Robust Comparison of Open Foundation Language-Vision Models and Datasets
- Authors: Marianna Nezhurina, Tomer Porian, Giovanni Pucceti, Tommie Kerssies, Romain Beaumont, Mehdi Cherti, Jenia Jitsev,
- Abstract summary: We show how scaling law derivation can be used for model and dataset comparison.<n>For the first time, full scaling laws are derived for two important language-vision learning procedures, CLIP and MaMMUT.<n>We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule.
- Score: 5.8465717270452195
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: In studies of transferable learning, scaling laws are obtained for various important foundation models to predict their properties and performance at larger scales. We show here how scaling law derivation can also be used for model and dataset comparison, allowing to decide which procedure is to be preferred for pre-training. For the first time, full scaling laws based on dense measurements across a wide span of model and samples seen scales are derived for two important language-vision learning procedures, CLIP and MaMMUT, that use either contrastive only or contrastive and captioning text generative loss. Ensuring sufficient prediction accuracy for held out points, we use derived scaling laws to compare both models, obtaining evidence for MaMMUT's stronger improvement with scale and better sample efficiency than standard CLIP. To strengthen validity of the comparison, we show scaling laws for various downstream tasks, classification, retrieval, and segmentation, and for different open datasets, DataComp, DFN and Re-LAION, observing consistently the same trends. We show that comparison can also be performed when deriving scaling laws with a constant learning rate schedule, reducing compute cost. Accurate derivation of scaling laws provides thus means to perform model and dataset comparison across scale spans, avoiding misleading conclusions based on measurements from single reference scales only, paving the road for systematic comparison and improvement of open foundation models and datasets for their creation. We release all the pre-trained models with their intermediate checkpoints, including openMaMMUT-L/14, which achieves $80.3\%$ zero-shot ImageNet-1k accuracy, trained on 12.8B samples from DataComp-1.4B. Code for reproducing experiments in the paper and raw experiments data can be found at https://github.com/LAION-AI/scaling-laws-for-comparison.
Related papers
- DataDecide: How to Predict Best Pretraining Data with Small Experiments [67.95896457895404]
We release models, data, and evaluations in DataDecide -- the most extensive open suite of models over differences in data and scale.<n>We conduct controlled pretraining experiments across 25 corpora with differing sources, deduplication, and filtering up to 100B tokens, model sizes up to 1B parameters, and 3 random seeds.
arXiv Detail & Related papers (2025-04-15T17:02:15Z) - Scaling Inference-Efficient Language Models [3.271571137474847]
We show that model architecture affects inference latency, where models of the same size can have up to 3.5x difference in latency.<n>We modify the Chinchilla scaling laws to co-optimize the model parameter count, the number of training tokens, and the model architecture.<n>We release the Morph-1B model, which improves inference latency by 1.8x while maintaining accuracy on downstream tasks.
arXiv Detail & Related papers (2025-01-30T03:16:44Z) - Bayesian scaling laws for in-context learning [72.17734205418502]
In-context learning (ICL) is a powerful technique for getting language models to perform complex tasks with no training updates.
We show that ICL approximates a Bayesian learner and develop a family of novel Bayesian scaling laws for ICL.
arXiv Detail & Related papers (2024-10-21T21:45:22Z) - A Hitchhiker's Guide to Scaling Law Estimation [56.06982415792523]
Scaling laws predict the loss of a target machine learning model by extrapolating from easier-to-train models with fewer parameters or smaller training sets.<n>We estimate more than 1000 scaling laws, then derive a set of best practices for estimating scaling laws in new model families.
arXiv Detail & Related papers (2024-10-15T17:59:10Z) - Scaling Laws for the Value of Individual Data Points in Machine Learning [55.596413470429475]
We introduce a new perspective by investigating scaling behavior for the value of individual data points.
We provide learning theory to support our scaling law, and we observe empirically that it holds across diverse model classes.
Our work represents a first step towards understanding and utilizing scaling properties for the value of individual data points.
arXiv Detail & Related papers (2024-05-30T20:10:24Z) - The Languini Kitchen: Enabling Language Modelling Research at Different
Scales of Compute [66.84421705029624]
We introduce an experimental protocol that enables model comparisons based on equivalent compute, measured in accelerator hours.
We pre-process an existing large, diverse, and high-quality dataset of books that surpasses existing academic benchmarks in quality, diversity, and document length.
This work also provides two baseline models: a feed-forward model derived from the GPT-2 architecture and a recurrent model in the form of a novel LSTM with ten-fold throughput.
arXiv Detail & Related papers (2023-09-20T10:31:17Z) - Reproducible scaling laws for contrastive language-image learning [42.354402731615444]
We investigate scaling laws for contrastive language-image pre-training (CLIP) with the public LAION dataset and the open-source OpenCLIP repository.
Our large-scale experiments involve models trained on up to two billion image-text pairs and identify power law scaling for multiple downstream tasks.
We find that the training distribution plays a key role in scaling laws as the OpenAI and OpenCLIP models exhibit different scaling behavior despite identical model architectures.
arXiv Detail & Related papers (2022-12-14T10:24:50Z) - A Solvable Model of Neural Scaling Laws [72.8349503901712]
Large language models with a huge number of parameters, when trained on near internet-sized number of tokens, have been empirically shown to obey neural scaling laws.
We propose a statistical model -- a joint generative data model and random feature model -- that captures this neural scaling phenomenology.
Key findings are the manner in which the power laws that occur in the statistics of natural datasets are extended by nonlinear random feature maps.
arXiv Detail & Related papers (2022-10-30T15:13:18Z) - Scaling Laws Under the Microscope: Predicting Transformer Performance
from Small Scale Experiments [42.793379799720434]
We investigate whether scaling laws can be used to accelerate model development.
We find that scaling laws emerge at finetuning time in some NLP tasks.
For tasks where scaling laws exist, they can be used to predict the performance of larger models.
arXiv Detail & Related papers (2022-02-13T19:13:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.