EMO-Debias: Benchmarking Gender Debiasing Techniques in Multi-Label Speech Emotion Recognition
- URL: http://arxiv.org/abs/2506.04652v1
- Date: Thu, 05 Jun 2025 05:48:31 GMT
- Title: EMO-Debias: Benchmarking Gender Debiasing Techniques in Multi-Label Speech Emotion Recognition
- Authors: Yi-Cheng Lin, Huang-Cheng Chou, Yu-Hsuan Li Liang, Hung-yi Lee,
- Abstract summary: EMO-Debias is a large-scale comparison of 13 debiasing methods applied to multi-label SER.<n>Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization.<n>Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps.
- Score: 49.27067541740956
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Speech emotion recognition (SER) systems often exhibit gender bias. However, the effectiveness and robustness of existing debiasing methods in such multi-label scenarios remain underexplored. To address this gap, we present EMO-Debias, a large-scale comparison of 13 debiasing methods applied to multi-label SER. Our study encompasses techniques from pre-processing, regularization, adversarial learning, biased learners, and distributionally robust optimization. Experiments conducted on acted and naturalistic emotion datasets, using WavLM and XLSR representations, evaluate each method under conditions of gender imbalance. Our analysis quantifies the trade-offs between fairness and accuracy, identifying which approaches consistently reduce gender performance gaps without compromising overall model performance. The findings provide actionable insights for selecting effective debiasing strategies and highlight the impact of dataset distributions.
Related papers
- The Root Shapes the Fruit: On the Persistence of Gender-Exclusive Harms in Aligned Language Models [91.86718720024825]
We center transgender, nonbinary, and other gender-diverse identities to investigate how alignment procedures interact with pre-existing gender-diverse bias.<n>Our findings reveal that DPO-aligned models are particularly sensitive to supervised finetuning.<n>We conclude with recommendations tailored to DPO and broader alignment practices.
arXiv Detail & Related papers (2024-11-06T06:50:50Z) - MABR: Multilayer Adversarial Bias Removal Without Prior Bias Knowledge [6.208151505901749]
Models trained on real-world data often mirror and exacerbate existing social biases.<n>We introduce a novel adversarial training strategy that operates independently of prior bias-type knowledge.<n>Our method effectively reduces social biases without the need for demographic annotations.
arXiv Detail & Related papers (2024-08-10T09:11:01Z) - Identifying and Adapting Transformer-Components Responsible for Gender
Bias in an English Language Model [1.6343144783668118]
Language models (LMs) exhibit and amplify many types of undesirable biases learned from the training data, including gender bias.
We study three methods for identifying causal relations between LM components and particular output.
We apply the methods to GPT-2 small and the problem of gender bias, and use the discovered sets of components to perform parameter-efficient fine-tuning for bias mitigation.
arXiv Detail & Related papers (2023-10-19T09:39:21Z) - Delving into Identify-Emphasize Paradigm for Combating Unknown Bias [52.76758938921129]
We propose an effective bias-conflicting scoring method (ECS) to boost the identification accuracy.
We also propose gradient alignment (GA) to balance the contributions of the mined bias-aligned and bias-conflicting samples.
Experiments are conducted on multiple datasets in various settings, demonstrating that the proposed solution can mitigate the impact of unknown biases.
arXiv Detail & Related papers (2023-02-22T14:50:24Z) - When mitigating bias is unfair: multiplicity and arbitrariness in algorithmic group fairness [8.367620276482056]
We introduce the FRAME (FaiRness Arbitrariness and Multiplicity Evaluation) framework, which evaluates bias mitigation through five dimensions.
Applying FRAME to various bias mitigation approaches across key datasets allows us to exhibit significant differences in the behaviors of debiasing methods.
These findings highlight the limitations of current fairness criteria and the inherent arbitrariness in the debiasing process.
arXiv Detail & Related papers (2023-02-14T16:53:52Z) - MABEL: Attenuating Gender Bias using Textual Entailment Data [20.489427903240017]
We propose MABEL, an intermediate pre-training approach for mitigating gender bias in contextualized representations.
Key to our approach is the use of a contrastive learning objective on counterfactually augmented, gender-balanced entailment pairs.
We show that MABEL outperforms previous task-agnostic debiasing approaches in terms of fairness.
arXiv Detail & Related papers (2022-10-26T18:36:58Z) - D-BIAS: A Causality-Based Human-in-the-Loop System for Tackling
Algorithmic Bias [57.87117733071416]
We propose D-BIAS, a visual interactive tool that embodies human-in-the-loop AI approach for auditing and mitigating social biases.
A user can detect the presence of bias against a group by identifying unfair causal relationships in the causal network.
For each interaction, say weakening/deleting a biased causal edge, the system uses a novel method to simulate a new (debiased) dataset.
arXiv Detail & Related papers (2022-08-10T03:41:48Z) - Information-Theoretic Bias Reduction via Causal View of Spurious
Correlation [71.9123886505321]
We propose an information-theoretic bias measurement technique through a causal interpretation of spurious correlation.
We present a novel debiasing framework against the algorithmic bias, which incorporates a bias regularization loss.
The proposed bias measurement and debiasing approaches are validated in diverse realistic scenarios.
arXiv Detail & Related papers (2022-01-10T01:19:31Z) - Towards Fair Affective Robotics: Continual Learning for Mitigating Bias
in Facial Expression and Action Unit Recognition [5.478764356647437]
We propose Continual Learning (CL) as an effective strategy to enhance fairness in Facial Expression Recognition (FER) systems.
We compare different state-of-the-art bias mitigation approaches with CL-based strategies for fairness on expression recognition and Action Unit (AU) detection tasks.
Our experiments show that CL-based methods, on average, outperform popular bias mitigation techniques.
arXiv Detail & Related papers (2021-03-15T18:36:14Z) - Towards causal benchmarking of bias in face analysis algorithms [54.19499274513654]
We develop an experimental method for measuring algorithmic bias of face analysis algorithms.
Our proposed method is based on generating synthetic transects'' of matched sample images.
We validate our method by comparing it to a study that employs the traditional observational method for analyzing bias in gender classification algorithms.
arXiv Detail & Related papers (2020-07-13T17:10:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.