Amortized variational transdimensional inference
- URL: http://arxiv.org/abs/2506.04749v1
- Date: Thu, 05 Jun 2025 08:33:07 GMT
- Title: Amortized variational transdimensional inference
- Authors: Laurence Davies, Dan Mackinlay, Rafael Oliveira, Scott A. Sisson,
- Abstract summary: CoSMIC is an extension to neural autoregressive conditional normalizing flow architectures.<n>We propose a combined variational transdimensional inference (VTI) approach to training CoSMIC flows.
- Score: 8.890385058609867
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: The expressiveness of flow-based models combined with stochastic variational inference (SVI) has, in recent years, expanded the application of optimization-based Bayesian inference to include problems with complex data relationships. However, until now, SVI using flow-based models has been limited to problems of fixed dimension. We introduce CoSMIC, normalizing flows (COntextually-Specified Masking for Identity-mapped Components), an extension to neural autoregressive conditional normalizing flow architectures that enables using a single amortized variational density for inference over a transdimensional target distribution. We propose a combined stochastic variational transdimensional inference (VTI) approach to training CoSMIC flows using techniques from Bayesian optimization and Monte Carlo gradient estimation. Numerical experiments demonstrate the performance of VTI on challenging problems that scale to high-cardinality model spaces.
Related papers
- Solving Inverse Problems with FLAIR [59.02385492199431]
Flow-based latent generative models are able to generate images with remarkable quality, even enabling text-to-image generation.<n>We present FLAIR, a novel training free variational framework that leverages flow-based generative models as a prior for inverse problems.<n>Results on standard imaging benchmarks demonstrate that FLAIR consistently outperforms existing diffusion- and flow-based methods in terms of reconstruction quality and sample diversity.
arXiv Detail & Related papers (2025-06-03T09:29:47Z) - Preconditioned Inexact Stochastic ADMM for Deep Model [35.37705488695026]
This paper develops an algorithm, PISA, which enables scalable parallel computing and supports various preconditions.<n>It converges under the sole assumption of Lipschitz continuity of the gradient on a bounded region, removing the need for other conditions commonly imposed by methods.<n>It demonstrates its superior numerical performance compared to various state-of-the-art iterations.
arXiv Detail & Related papers (2025-02-15T12:28:51Z) - Stable Derivative Free Gaussian Mixture Variational Inference for Bayesian Inverse Problems [4.842853252452336]
Key challenges include costly repeated evaluations of forward models, multimodality, and inaccessible gradients for the forward model.<n>We develop a variational inference framework that combines Fisher-Rao natural gradient with specialized quadrature rules to enable derivative free updates of Gaussian mixture variational families.<n>The resulting method, termed Derivative Free Gaussian Mixture Variational Inference (DF-GMVI), guarantees covariance positivity and affine invariance, offering a stable and efficient framework for approximating complex posterior distributions.
arXiv Detail & Related papers (2025-01-08T03:50:15Z) - Pushing the Limits of Large Language Model Quantization via the Linearity Theorem [71.3332971315821]
We present a "line theoremarity" establishing a direct relationship between the layer-wise $ell$ reconstruction error and the model perplexity increase due to quantization.
This insight enables two novel applications: (1) a simple data-free LLM quantization method using Hadamard rotations and MSE-optimal grids, dubbed HIGGS, and (2) an optimal solution to the problem of finding non-uniform per-layer quantization levels.
arXiv Detail & Related papers (2024-11-26T15:35:44Z) - Online Variational Sequential Monte Carlo [49.97673761305336]
We build upon the variational sequential Monte Carlo (VSMC) method, which provides computationally efficient and accurate model parameter estimation and Bayesian latent-state inference.
Online VSMC is capable of performing efficiently, entirely on-the-fly, both parameter estimation and particle proposal adaptation.
arXiv Detail & Related papers (2023-12-19T21:45:38Z) - Joint State Estimation and Noise Identification Based on Variational
Optimization [8.536356569523127]
A novel adaptive Kalman filter method based on conjugate-computation variational inference, referred to as CVIAKF, is proposed.
The effectiveness of CVIAKF is validated through synthetic and real-world datasets of maneuvering target tracking.
arXiv Detail & Related papers (2023-12-15T07:47:03Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
We introduce an ensemble Kalman filter (EnKF) into the non-mean-field (NMF) variational inference framework to approximate the posterior distribution of the latent states.
This novel marriage between EnKF and GPSSM not only eliminates the need for extensive parameterization in learning variational distributions, but also enables an interpretable, closed-form approximation of the evidence lower bound (ELBO)
We demonstrate that the resulting EnKF-aided online algorithm embodies a principled objective function by ensuring data-fitting accuracy while incorporating model regularizations to mitigate overfitting.
arXiv Detail & Related papers (2023-12-10T15:22:30Z) - Variational Laplace Autoencoders [53.08170674326728]
Variational autoencoders employ an amortized inference model to approximate the posterior of latent variables.
We present a novel approach that addresses the limited posterior expressiveness of fully-factorized Gaussian assumption.
We also present a general framework named Variational Laplace Autoencoders (VLAEs) for training deep generative models.
arXiv Detail & Related papers (2022-11-30T18:59:27Z) - Manifold Gaussian Variational Bayes on the Precision Matrix [70.44024861252554]
We propose an optimization algorithm for Variational Inference (VI) in complex models.
We develop an efficient algorithm for Gaussian Variational Inference whose updates satisfy the positive definite constraint on the variational covariance matrix.
Due to its black-box nature, MGVBP stands as a ready-to-use solution for VI in complex models.
arXiv Detail & Related papers (2022-10-26T10:12:31Z) - Probabilistic partition of unity networks for high-dimensional
regression problems [1.0227479910430863]
We explore the partition of unity network (PPOU-Net) model in the context of high-dimensional regression problems.
We propose a general framework focusing on adaptive dimensionality reduction.
The PPOU-Nets consistently outperform the baseline fully-connected neural networks of comparable sizes in numerical experiments.
arXiv Detail & Related papers (2022-10-06T06:01:36Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Jointly Modeling and Clustering Tensors in High Dimensions [6.072664839782975]
We consider the problem of jointly benchmarking and clustering of tensors.
We propose an efficient high-maximization algorithm that converges geometrically to a neighborhood that is within statistical precision.
arXiv Detail & Related papers (2021-04-15T21:06:16Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.