Tensor-based multivariate function approximation: methods benchmarking and comparison
- URL: http://arxiv.org/abs/2506.04791v1
- Date: Thu, 05 Jun 2025 09:17:55 GMT
- Title: Tensor-based multivariate function approximation: methods benchmarking and comparison
- Authors: Athanasios C. Antoulas, Ion Victor Gosea, Charles Poussot-Vassal, Pierre Vuillemin,
- Abstract summary: In this note, we evaluate the performances, the features and the user-experience of some methods designed for tensor- (or data-) based multivariate function construction and approximation.<n>The contribution claimed is to suggest a complete benchmark collection of some available tools for tensor approximation by surrogate models.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In this note, we evaluate the performances, the features and the user-experience of some methods (and their implementations) designed for tensor- (or data-) based multivariate function construction and approximation. To this aim, a collection of multivariate functions extracted from contributive works coming from different communities, is suggested. First, these functions with varying complexity (e.g. number and degree of the variables) and nature (e.g. rational, irrational, differentiable or not, symmetric, etc.) are used to construct tensors, each of different dimension and size on the disk. Second, grounded on this tensor, we inspect performances of each considered method (e.g. the accuracy, the computational time, the parameters tuning impact, etc.). Finally, considering the "best" parameter tuning set, we compare each method using multiple evaluation criteria. The purpose of this note is not to rank the methods but rather to evaluate as fairly as possible the different available strategies, with the idea in mind to guide users to understand the process, the possibilities, the advantages and the limits brought by each tools. The contribution claimed is to suggest a complete benchmark collection of some available tools for tensor approximation by surrogate models (e.g. rational functions, networks, etc.). In addition, as contributors of the multivariate Loewner Framework (mLF) approach (and its side implementation in MDSPACK), attention and details of the latter are more explicitly given, in order to provide readers a digest of this contributive work and some details with simple examples.
Related papers
- A Distance Metric for Mixed Integer Programming Instances [0.0]
Mixed-integer linear programming (MILP) is a powerful tool for addressing a wide range of real-world problems.<n>Existing similarity metrics often lack precision in identifying instance classes or rely heavily on labeled data.<n>This paper introduces the first mathematical distance metric for MILP instances, derived directly from their mathematical formulations.
arXiv Detail & Related papers (2025-07-15T07:55:09Z) - Multi-Task Learning for Sparsity Pattern Heterogeneity: Statistical and Computational Perspectives [10.514866749547558]
We consider a problem in Multi-Task Learning (MTL) where multiple linear models are jointly trained on a collection of datasets.
A key novelty of our framework is that it allows the sparsity pattern of regression coefficients and the values of non-zero coefficients to differ across tasks.
Our methods encourage models to share information across tasks through separately encouraging 1) coefficient supports, and/or 2) nonzero coefficient values to be similar.
This allows models to borrow strength during variable selection even when non-zero coefficient values differ across tasks.
arXiv Detail & Related papers (2022-12-16T19:52:25Z) - Ensemble-based gradient inference for particle methods in optimization
and sampling [2.9005223064604078]
We propose an approach based on function evaluations and Bayesian inference to extract higher-order differential information.
We suggest to use this information for the improvement of established ensemble-based numerical methods for optimization and sampling.
arXiv Detail & Related papers (2022-09-23T09:21:35Z) - Efficient Approximate Kernel Based Spike Sequence Classification [56.2938724367661]
Machine learning models, such as SVM, require a definition of distance/similarity between pairs of sequences.
Exact methods yield better classification performance, but they pose high computational costs.
We propose a series of ways to improve the performance of the approximate kernel in order to enhance its predictive performance.
arXiv Detail & Related papers (2022-09-11T22:44:19Z) - An Additive Instance-Wise Approach to Multi-class Model Interpretation [53.87578024052922]
Interpretable machine learning offers insights into what factors drive a certain prediction of a black-box system.
Existing methods mainly focus on selecting explanatory input features, which follow either locally additive or instance-wise approaches.
This work exploits the strengths of both methods and proposes a global framework for learning local explanations simultaneously for multiple target classes.
arXiv Detail & Related papers (2022-07-07T06:50:27Z) - Object Representations as Fixed Points: Training Iterative Refinement
Algorithms with Implicit Differentiation [88.14365009076907]
Iterative refinement is a useful paradigm for representation learning.
We develop an implicit differentiation approach that improves the stability and tractability of training.
arXiv Detail & Related papers (2022-07-02T10:00:35Z) - Learning Functions on Multiple Sets using Multi-Set Transformers [31.09791656949115]
We show how to generalize this architecture to sets of elements of any dimension by dimension equivariance.
We demonstrate that our architecture is a universal approximator of these functions, and show superior results to existing methods on a variety of tasks.
arXiv Detail & Related papers (2022-06-30T17:39:15Z) - R-MBO: A Multi-surrogate Approach for Preference Incorporation in
Multi-objective Bayesian Optimisation [0.0]
We present an a-priori multi-surrogate approach to incorporate the desirable objective function values as the preferences of a decision-maker in multi-objective BO.
The results and comparison with the existing mono-surrogate approach on benchmark and real-world optimisation problems show the potential of the proposed approach.
arXiv Detail & Related papers (2022-04-27T19:58:26Z) - Differentiable Spline Approximations [48.10988598845873]
Differentiable programming has significantly enhanced the scope of machine learning.
Standard differentiable programming methods (such as autodiff) typically require that the machine learning models be differentiable.
We show that leveraging this redesigned Jacobian in the form of a differentiable "layer" in predictive models leads to improved performance in diverse applications.
arXiv Detail & Related papers (2021-10-04T16:04:46Z) - Causality-based Counterfactual Explanation for Classification Models [11.108866104714627]
We propose a prototype-based counterfactual explanation framework (ProCE)
ProCE is capable of preserving the causal relationship underlying the features of the counterfactual data.
In addition, we design a novel gradient-free optimization based on the multi-objective genetic algorithm that generates the counterfactual explanations.
arXiv Detail & Related papers (2021-05-03T09:25:59Z) - Fine-Grained Dynamic Head for Object Detection [68.70628757217939]
We propose a fine-grained dynamic head to conditionally select a pixel-level combination of FPN features from different scales for each instance.
Experiments demonstrate the effectiveness and efficiency of the proposed method on several state-of-the-art detection benchmarks.
arXiv Detail & Related papers (2020-12-07T08:16:32Z) - Interpretable Multi-dataset Evaluation for Named Entity Recognition [110.64368106131062]
We present a general methodology for interpretable evaluation for the named entity recognition (NER) task.
The proposed evaluation method enables us to interpret the differences in models and datasets, as well as the interplay between them.
By making our analysis tool available, we make it easy for future researchers to run similar analyses and drive progress in this area.
arXiv Detail & Related papers (2020-11-13T10:53:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.