LogicPuzzleRL: Cultivating Robust Mathematical Reasoning in LLMs via Reinforcement Learning
- URL: http://arxiv.org/abs/2506.04821v1
- Date: Thu, 05 Jun 2025 09:40:47 GMT
- Title: LogicPuzzleRL: Cultivating Robust Mathematical Reasoning in LLMs via Reinforcement Learning
- Authors: Zhen Hao Wong, Jingwen Deng, Runming He, Zirong Chen, Qijie You, Hejun Dong, Hao Liang, Chengyu Shen, Bin Cui, Wentao Zhang,
- Abstract summary: Large language models (LLMs) excel at many supervised tasks but often struggle with structured reasoning unfamiliar settings.<n>This discrepancy suggests that standard fine-tuning pipelines may instill narrow, domain-specifics rather than fostering general-purpose thinking strategies.<n>We propose a "play to learn" framework that fine-tunes LLMs through reinforcement learning on a suite of seven custom logic puzzles.
- Score: 29.047063129464494
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large language models (LLMs) excel at many supervised tasks but often struggle with structured reasoning in unfamiliar settings. This discrepancy suggests that standard fine-tuning pipelines may instill narrow, domain-specific heuristics rather than fostering general-purpose thinking strategies. In this work, we propose a "play to learn" framework that fine-tunes LLMs through reinforcement learning on a suite of seven custom logic puzzles, each designed to cultivate distinct reasoning skills such as constraint propagation, spatial consistency, and symbolic deduction. Using a reinforcement learning setup with verifiable rewards, models receive binary feedback based on puzzle correctness, encouraging iterative, hypothesis-driven problem solving. We demonstrate that this training approach significantly improves out-of-distribution performance on a range of mathematical benchmarks, especially for mid-difficulty problems that require multi-step reasoning. Analyses across problem categories and difficulty levels reveal that puzzle training promotes transferable reasoning routines, strengthening algebraic manipulation, geometric inference, and combinatorial logic, while offering limited gains on rote or highly specialized tasks. These findings show that reinforcement learning over logic puzzles reshapes the internal reasoning of LLMs, enabling more robust and compositional generalization without relying on task-specific symbolic tools.
Related papers
- Learning Deliberately, Acting Intuitively: Unlocking Test-Time Reasoning in Multimodal LLMs [7.501387372794562]
Deliberate-to-Intuitive reasoning framework (D2I) improves understanding and reasoning ability of multimodal language models.<n>Our method sets deliberate reasoning strategies to enhance modality alignment only through the rule-based format reward during training.<n>While evaluating, the reasoning style shifts to intuitive, which removes deliberate reasoning strategies during training and implicitly reflects the model's acquired abilities in the response.
arXiv Detail & Related papers (2025-07-09T16:25:44Z) - Do LLMs Dream of Discrete Algorithms? [0.7646713951724011]
Large Language Models (LLMs) have rapidly transformed the landscape of artificial intelligence.<n>Their reliance on probabilistic inference limits their effectiveness in domains requiring strict logical reasoning.<n>This paper proposes a neurosymbolic approach that augments LLMs with logic-based reasoning modules.
arXiv Detail & Related papers (2025-06-29T22:03:01Z) - OMEGA: Can LLMs Reason Outside the Box in Math? Evaluating Exploratory, Compositional, and Transformative Generalization [88.76091817642963]
Recent large-scale language models (LLMs) with long Chain-of-such reasoning as DeepSeek-R1-have achieved impressive results on Olympiad-level mathematics.<n>We introduce OMEGA-Out-of-distribution Math Problems Evaluation with 3 Generalization Axes-a benchmark designed to evaluate three axes of out-of-distribution generalization.
arXiv Detail & Related papers (2025-06-23T17:51:40Z) - Computational Thinking Reasoning in Large Language Models [69.28428524878885]
Computational Thinking Model (CTM) is a novel framework that incorporates computational thinking paradigms into large language models (LLMs)<n>Live code execution is seamlessly integrated into the reasoning process, allowing CTM to think by computing.<n>CTM outperforms conventional reasoning models and tool-augmented baselines in terms of accuracy, interpretability, and generalizability.
arXiv Detail & Related papers (2025-06-03T09:11:15Z) - PixelThink: Towards Efficient Chain-of-Pixel Reasoning [70.32510083790069]
PixelThink is a simple yet effective scheme that integrates externally estimated task difficulty and internally measured model uncertainty.<n>It learns to compress reasoning length in accordance with scene complexity and predictive confidence.<n> Experimental results demonstrate that the proposed approach improves both reasoning efficiency and overall segmentation performance.
arXiv Detail & Related papers (2025-05-29T17:55:49Z) - ToTRL: Unlock LLM Tree-of-Thoughts Reasoning Potential through Puzzles Solving [4.987786842464663]
Tree-of-thoughts (ToT) offers a conceptually more advanced approach by modeling reasoning as an exploration within a tree structure.<n>ToTRL is designed to guide LLMs in developing the parallel ToT strategy based on the sequential CoT strategy.<n>Our ToTQwen3-8B model, trained with ToTRL, achieves significant improvement in performance and reasoning efficiency on complex reasoning tasks.
arXiv Detail & Related papers (2025-05-19T05:18:58Z) - VGRP-Bench: Visual Grid Reasoning Puzzle Benchmark for Large Vision-Language Models [31.645103181716678]
Large Vision-Language Models (LVLMs) struggle with puzzles, which require precise perception, rule comprehension, and logical reasoning.<n>We introduce VGRP-Bench, a Visual Grid Reasoning Puzzle Benchmark featuring 20 diverse puzzles.<n>Our results reveal that even the state-of-the-art LVLMs struggle with these puzzles, highlighting fundamental limitations in their puzzle-solving capabilities.
arXiv Detail & Related papers (2025-03-29T12:50:38Z) - Beyond Interpolation: Extrapolative Reasoning with Reinforcement Learning and Graph Neural Networks [18.982541044390384]
This study focuses on the impact of the inductive bias of the architecture, different reward systems and the role of recurrent modeling in enabling sequential reasoning.<n>We show how these elements contribute to successful extrapolation on increasingly complex puzzles.
arXiv Detail & Related papers (2025-02-06T08:07:35Z) - ZebraLogic: On the Scaling Limits of LLMs for Logical Reasoning [92.76959707441954]
We introduce ZebraLogic, a comprehensive evaluation framework for assessing LLM reasoning performance.<n>ZebraLogic enables the generation of puzzles with controllable and quantifiable complexity.<n>Our results reveal a significant decline in accuracy as problem complexity grows.
arXiv Detail & Related papers (2025-02-03T06:44:49Z) - Forest-of-Thought: Scaling Test-Time Compute for Enhancing LLM Reasoning [40.069109287947875]
We propose a novel reasoning framework called Forest-of-Thought (FoT)<n>FoT integrates multiple reasoning trees to leverage collective decision-making for solving complex logical problems.<n>FoT employs sparse activation strategies to select the most relevant reasoning paths, improving both efficiency and accuracy.
arXiv Detail & Related papers (2024-12-12T09:01:18Z) - On Memorization of Large Language Models in Logical Reasoning [70.94164038947078]
Large language models (LLMs) achieve good performance on challenging reasoning benchmarks, yet could also make basic reasoning mistakes.<n>One hypothesis is that the increasingly high and nearly saturated performance could be due to the memorization of similar problems.<n>We show that fine-tuning leads to heavy memorization, but it also consistently improves generalization performance.
arXiv Detail & Related papers (2024-10-30T15:31:54Z) - Reversal of Thought: Enhancing Large Language Models with Preference-Guided Reverse Reasoning Warm-up [9.42385235462794]
Large language models (LLMs) have shown remarkable performance in reasoning tasks but face limitations in mathematical and complex logical reasoning.<n>We propose Reversal of Thought (RoT) to enhance the logical reasoning abilities of LLMs during the warm-up phase prior to batch inference.<n>RoT utilizes a Preference-Guided Reverse Reasoning warm-up strategy, which integrates logical symbols for pseudocode planning.
arXiv Detail & Related papers (2024-10-16T07:44:28Z) - CLR-Fact: Evaluating the Complex Logical Reasoning Capability of Large Language Models over Factual Knowledge [44.59258397967782]
Large language models (LLMs) have demonstrated impressive capabilities across various natural language processing tasks.
We present a systematic evaluation of state-of-the-art LLMs' complex logical reasoning abilities.
We find that LLMs excel at reasoning over general world knowledge but face significant challenges with specialized domain-specific knowledge.
arXiv Detail & Related papers (2024-07-30T05:40:32Z) - Improving Complex Reasoning over Knowledge Graph with Logic-Aware Curriculum Tuning [89.89857766491475]
We propose a curriculum-based logical-aware instruction tuning framework, named LACT.<n>Specifically, we augment the arbitrary first-order logical queries via binary tree decomposition.<n> Experiments across widely used datasets demonstrate that LACT has substantial improvements(brings an average +5.5% MRR score) over advanced methods, achieving the new state-of-the-art.
arXiv Detail & Related papers (2024-05-02T18:12:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.