Dissecting Long Reasoning Models: An Empirical Study
- URL: http://arxiv.org/abs/2506.04913v1
- Date: Thu, 05 Jun 2025 11:47:10 GMT
- Title: Dissecting Long Reasoning Models: An Empirical Study
- Authors: Yongyu Mu, Jiali Zeng, Bei Li, Xinyan Guan, Fandong Meng, Jie Zhou, Tong Xiao, Jingbo Zhu,
- Abstract summary: We systematically analyze the roles of positive and negative samples in reinforcement learning (RL)<n>We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage.<n>We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes.
- Score: 94.31064312707211
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite recent progress in training long-context reasoning models via reinforcement learning (RL), several open questions and counterintuitive behaviors remain. This work focuses on three key aspects: (1) We systematically analyze the roles of positive and negative samples in RL, revealing that positive samples mainly facilitate data fitting, whereas negative samples significantly enhance generalization and robustness. Interestingly, training solely on negative samples can rival standard RL training performance. (2) We identify substantial data inefficiency in group relative policy optimization, where over half of the samples yield zero advantage. To address this, we explore two straightforward strategies, including relative length rewards and offline sample injection, to better leverage these data and enhance reasoning efficiency and capability. (3) We investigate unstable performance across various reasoning models and benchmarks, attributing instability to uncertain problems with ambiguous outcomes, and demonstrate that multiple evaluation runs mitigate this issue.
Related papers
- Model-agnostic Mitigation Strategies of Data Imbalance for Regression [0.0]
Data imbalance persists as a pervasive challenge in regression tasks, introducing bias in model performance and undermining predictive reliability.<n>We present advanced mitigation techniques, which build upon and improve existing sampling methods.<n>We demonstrate that constructing an ensemble of models -- one trained with imbalance mitigation and another without -- can significantly reduce these negative effects.
arXiv Detail & Related papers (2025-06-02T09:46:08Z) - Behavior Injection: Preparing Language Models for Reinforcement Learning [24.46625106928253]
Reinforcement fine-tuning (RFT) has emerged as a powerful post-training technique to incentivize the reasoning ability of large language models (LLMs)<n>LLMs can respond very inconsistently to RFT: some show substantial performance gains, while others plateau or even degrade.<n>We propose behavior injection, a task-agnostic data-augmentation scheme applied prior to RL.
arXiv Detail & Related papers (2025-05-25T00:54:50Z) - Unearthing Gems from Stones: Policy Optimization with Negative Sample Augmentation for LLM Reasoning [48.33401015101481]
We propose Behavior Constrained Policy Gradient with Negative Sample Augmentation (BCPG-NSA)<n>BCPG-NSA is a fine-grained offline framework that encompasses three stages: 1) sample segmentation, 2) consensus-based step correctness assessment combining LLM and PRM judgers, and 3) policy optimization with NSA designed to effectively mine positive steps within negative samples.<n> Experimental results show that BCPG-NSA outperforms baselines on several challenging math/coding reasoning benchmarks using the same training dataset.
arXiv Detail & Related papers (2025-05-20T14:16:49Z) - Unlocking the Potential of Difficulty Prior in RL-based Multimodal Reasoning [69.64809103333839]
We investigate how explicitly modeling problem's difficulty prior information shapes the effectiveness of reinforcement learning based fine-tuning for multimodal reasoning.<n>Our approach demonstrates significant performances across various multi-modal mathematical reasoning benchmarks with only 2K+0.6K two-stage training data.
arXiv Detail & Related papers (2025-05-19T15:43:10Z) - When hard negative sampling meets supervised contrastive learning [17.173114048398947]
We introduce a new supervised contrastive learning objective, SCHaNe, which incorporates hard negative sampling during the fine-tuning phase.
SchaNe outperforms the strong baseline BEiT-3 in Top-1 accuracy across various benchmarks.
Our proposed objective sets a new state-of-the-art for base models on ImageNet-1k, achieving an 86.14% accuracy.
arXiv Detail & Related papers (2023-08-28T20:30:10Z) - Are Sample-Efficient NLP Models More Robust? [90.54786862811183]
We investigate the relationship between sample efficiency (amount of data needed to reach a given ID accuracy) and robustness (how models fare on OOD evaluation)
We find that higher sample efficiency is only correlated with better average OOD robustness on some modeling interventions and tasks, but not others.
These results suggest that general-purpose methods for improving sample efficiency are unlikely to yield universal OOD robustness improvements, since such improvements are highly dataset- and task-dependent.
arXiv Detail & Related papers (2022-10-12T17:54:59Z) - Towards Robust Visual Question Answering: Making the Most of Biased
Samples via Contrastive Learning [54.61762276179205]
We propose a novel contrastive learning approach, MMBS, for building robust VQA models by Making the Most of Biased Samples.
Specifically, we construct positive samples for contrastive learning by eliminating the information related to spurious correlation from the original training samples.
We validate our contributions by achieving competitive performance on the OOD dataset VQA-CP v2 while preserving robust performance on the ID dataset VQA v2.
arXiv Detail & Related papers (2022-10-10T11:05:21Z) - Rethinking InfoNCE: How Many Negative Samples Do You Need? [54.146208195806636]
We study how many negative samples are optimal for InfoNCE in different scenarios via a semi-quantitative theoretical framework.
We estimate the optimal negative sampling ratio using the $K$ value that maximizes the training effectiveness function.
arXiv Detail & Related papers (2021-05-27T08:38:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.