Single GPU Task Adaptation of Pathology Foundation Models for Whole Slide Image Analysis
- URL: http://arxiv.org/abs/2506.05184v1
- Date: Thu, 05 Jun 2025 15:56:45 GMT
- Title: Single GPU Task Adaptation of Pathology Foundation Models for Whole Slide Image Analysis
- Authors: Neeraj Kumar, Swaraj Nanda, Siddharth Singi, Jamal Benhamida, David Kim, Jie-Fu Chen, Amir Momeni-Boroujeni, Gregory M. Goldgof, Gabriele Campanella, Chad Vanderbilt,
- Abstract summary: Pathology foundation models (PFMs) have emerged as powerful tools for analyzing whole slide images (WSIs)<n>TAPFM uses vision transformer (vit) attention for MIL aggregation while optimizing both for feature representations and attention weights.<n> evaluated on mutation prediction tasks for bladder cancer and lung adenocarcinoma.
- Score: 8.076987502347327
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Pathology foundation models (PFMs) have emerged as powerful tools for analyzing whole slide images (WSIs). However, adapting these pretrained PFMs for specific clinical tasks presents considerable challenges, primarily due to the availability of only weak (WSI-level) labels for gigapixel images, necessitating multiple instance learning (MIL) paradigm for effective WSI analysis. This paper proposes a novel approach for single-GPU \textbf{T}ask \textbf{A}daptation of \textbf{PFM}s (TAPFM) that uses vision transformer (\vit) attention for MIL aggregation while optimizing both for feature representations and attention weights. The proposed approach maintains separate computational graphs for MIL aggregator and the PFM to create stable training dynamics that align with downstream task objectives during end-to-end adaptation. Evaluated on mutation prediction tasks for bladder cancer and lung adenocarcinoma across institutional and TCGA cohorts, TAPFM consistently outperforms conventional approaches, with H-Optimus-0 (TAPFM) outperforming the benchmarks. TAPFM effectively handles multi-label classification of actionable mutations as well. Thus, TAPFM makes adaptation of powerful pre-trained PFMs practical on standard hardware for various clinical applications.
Related papers
- Benchmarking histopathology foundation models in a multi-center dataset for skin cancer subtyping [1.927195358774599]
Pretraining on large-scale, in-domain datasets grants histopathology foundation models (FM) the ability to learn task-agnostic data representations.<n>In computational pathology, automated whole slide image analysis requires multiple instance learning (MIL) frameworks due to the gigapixel scale of the slides.<n>Our work presents a novel benchmark for evaluating histopathology FMs as patch-level feature extractors within a MIL classification framework.
arXiv Detail & Related papers (2025-06-23T14:12:16Z) - Multi-Scale Finetuning for Encoder-based Time Series Foundation Models [56.503053716053]
Time series foundation models (TSFMs) demonstrate impressive zero-shot performance for time series forecasting.<n>We argue that it falls short of fully leveraging TSFMs' capabilities, often resulting in overfitting and suboptimal performance.<n>We propose textbftextscfinetextbftextsctuning (textbfMSFT), a simple yet general framework that explicitly integrates multi-scale modeling into the finetuning process.
arXiv Detail & Related papers (2025-06-17T01:06:01Z) - FisherTune: Fisher-Guided Robust Tuning of Vision Foundation Models for Domain Generalized Segmentation [65.93276461982093]
Existing approaches either selectively fine-tune parameters or freeze the VFMs and update only the adapters.<n>We propose textbfFisherTune, a robust fine-tuning method guided by the Domain-Related Fisher Information Matrix (DR-FIM)<n>DR-FIM measures parameter sensitivity across tasks and domains, enabling selective updates that preserve generalization and enhance DGSS adaptability.
arXiv Detail & Related papers (2025-03-23T04:47:15Z) - Promptable Anomaly Segmentation with SAM Through Self-Perception Tuning [63.55145330447408]
We propose a novel textbfSelf-textbfPerceptinon textbfTuning (textbfSPT) method for anomaly segmentation.<n>The SPT method incorporates a self-drafting tuning strategy, which generates an initial coarse draft of the anomaly mask, followed by a refinement process.
arXiv Detail & Related papers (2024-11-26T08:33:25Z) - Adaptive Aggregation Weights for Federated Segmentation of Pancreas MRI [5.631060921219683]
Federated learning (FL) enables collaborative model training across institutions without sharing sensitive data.<n>Traditional FL methods, such as Federated Averaging (FedAvg), face difficulties in generalizing across domains.<n>This paper introduces a novel approach that incorporates adaptive aggregation weights.
arXiv Detail & Related papers (2024-10-29T20:53:01Z) - A Novel Benchmark for Few-Shot Semantic Segmentation in the Era of Foundation Models [7.428199805959228]
Few-shot semantic segmentation (FSS) is a crucial challenge in computer vision.<n>With the emergence of vision foundation models (VFM) as generalist feature extractors, we seek to explore the adaptation of these models for FSS.<n>We propose a novel realistic benchmark with a simple and straightforward adaptation process tailored for this task.
arXiv Detail & Related papers (2024-01-20T19:50:51Z) - Convolutional Monge Mapping Normalization for learning on sleep data [63.22081662149488]
We propose a new method called Convolutional Monge Mapping Normalization (CMMN)
CMMN consists in filtering the signals in order to adapt their power spectrum density (PSD) to a Wasserstein barycenter estimated on training data.
Numerical experiments on sleep EEG data show that CMMN leads to significant and consistent performance gains independent from the neural network architecture.
arXiv Detail & Related papers (2023-05-30T08:24:01Z) - Training Lightweight Graph Convolutional Networks with Phase-field
Models [12.18340575383456]
We design lightweight graph convolutional networks (GCNs) using a particular class of regularizers, dubbed as phase-field models (PFMs)
PFMs exhibit a bi-phase behavior using a particular ultra-local term that allows training both the topology and the weight parameters of GCNs as a part of a single "end-to-end" optimization problem.
arXiv Detail & Related papers (2022-12-19T12:49:03Z) - PyMAF-X: Towards Well-aligned Full-body Model Regression from Monocular
Images [60.33197938330409]
PyMAF-X is a regression-based approach to recovering parametric full-body models from monocular images.
PyMAF and PyMAF-X effectively improve the mesh-image alignment and achieve new state-of-the-art results.
arXiv Detail & Related papers (2022-07-13T17:58:33Z) - FAMLP: A Frequency-Aware MLP-Like Architecture For Domain Generalization [73.41395947275473]
We propose a novel frequency-aware architecture, in which the domain-specific features are filtered out in the transformed frequency domain.
Experiments on three benchmarks demonstrate significant performance, outperforming the state-of-the-art methods by a margin of 3%, 4% and 9%, respectively.
arXiv Detail & Related papers (2022-03-24T07:26:29Z) - Lung Cancer Lesion Detection in Histopathology Images Using Graph-Based
Sparse PCA Network [93.22587316229954]
We propose a graph-based sparse principal component analysis (GS-PCA) network, for automated detection of cancerous lesions on histological lung slides stained by hematoxylin and eosin (H&E)
We evaluate the performance of the proposed algorithm on H&E slides obtained from an SVM K-rasG12D lung cancer mouse model using precision/recall rates, F-score, Tanimoto coefficient, and area under the curve (AUC) of the receiver operator characteristic (ROC)
arXiv Detail & Related papers (2021-10-27T19:28:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.