EvidenceOutcomes: a Dataset of Clinical Trial Publications with Clinically Meaningful Outcomes
- URL: http://arxiv.org/abs/2506.05380v1
- Date: Tue, 03 Jun 2025 02:22:06 GMT
- Title: EvidenceOutcomes: a Dataset of Clinical Trial Publications with Clinically Meaningful Outcomes
- Authors: Yiliang Zhou, Abigail M. Newbury, Gongbo Zhang, Betina Ross Idnay, Hao Liu, Chunhua Weng, Yifan Peng,
- Abstract summary: EvidenceOutcomes is a novel, large, annotated corpus of clinically meaningful outcomes extracted from biomedical literature.<n>EvidenceOutcomes can serve as a shared benchmark to develop and test future machine learning algorithms.
- Score: 17.22091807858547
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The fundamental process of evidence extraction and synthesis in evidence-based medicine involves extracting PICO (Population, Intervention, Comparison, and Outcome) elements from biomedical literature. However, Outcomes, being the most complex elements, are often neglected or oversimplified in existing benchmarks. To address this issue, we present EvidenceOutcomes, a novel, large, annotated corpus of clinically meaningful outcomes extracted from biomedical literature. We first developed a robust annotation guideline for extracting clinically meaningful outcomes from text through iteration and discussion with clinicians and Natural Language Processing experts. Then, three independent annotators annotated the Results and Conclusions sections of a randomly selected sample of 500 PubMed abstracts and 140 PubMed abstracts from the existing EBM-NLP corpus. This resulted in EvidenceOutcomes with high-quality annotations of an inter-rater agreement of 0.76. Additionally, our fine-tuned PubMedBERT model, applied to these 500 PubMed abstracts, achieved an F1-score of 0.69 at the entity level and 0.76 at the token level on the subset of 140 PubMed abstracts from the EBM-NLP corpus. EvidenceOutcomes can serve as a shared benchmark to develop and test future machine learning algorithms to extract clinically meaningful outcomes from biomedical abstracts.
Related papers
- Biomed-Enriched: A Biomedical Dataset Enriched with LLMs for Pretraining and Extracting Rare and Hidden Content [0.10241134756773229]
We introduce Biomed-Enriched, a biomedical text dataset constructed from PubMed via a two-stage annotation process.<n>In the first stage, a large language model annotates 400K paragraphs from PubMed scientific articles, assigning scores for their type (review, study, clinical case, other), domain (clinical, biomedical, other), and educational quality.<n>The resulting metadata allows us to extract refined subsets, including 2M clinical case paragraphs with over 450K high-quality ones from articles with commercial-use licenses.
arXiv Detail & Related papers (2025-06-25T11:30:25Z) - FactPICO: Factuality Evaluation for Plain Language Summarization of Medical Evidence [46.71469172542448]
This paper presents FactPICO, a factuality benchmark for plain language summarization of medical texts.
It consists of 345 plain language summaries of abstracts generated from three randomized controlled trials (RCTs)
We assess the factuality of critical elements of RCTs in those summaries, as well as the reported findings concerning these.
arXiv Detail & Related papers (2024-02-18T04:45:01Z) - XAI for In-hospital Mortality Prediction via Multimodal ICU Data [57.73357047856416]
We propose an efficient, explainable AI solution for predicting in-hospital mortality via multimodal ICU data.
We employ multimodal learning in our framework, which can receive heterogeneous inputs from clinical data and make decisions.
Our framework can be easily transferred to other clinical tasks, which facilitates the discovery of crucial factors in healthcare research.
arXiv Detail & Related papers (2023-12-29T14:28:04Z) - Self-Verification Improves Few-Shot Clinical Information Extraction [73.6905567014859]
Large language models (LLMs) have shown the potential to accelerate clinical curation via few-shot in-context learning.
They still struggle with issues regarding accuracy and interpretability, especially in mission-critical domains such as health.
Here, we explore a general mitigation framework using self-verification, which leverages the LLM to provide provenance for its own extraction and check its own outputs.
arXiv Detail & Related papers (2023-05-30T22:05:11Z) - Detecting automatically the layout of clinical documents to enhance the
performances of downstream natural language processing [53.797797404164946]
We designed an algorithm to process clinical PDF documents and extract only clinically relevant text.
The algorithm consists of several steps: initial text extraction using a PDF, followed by classification into such categories as body text, left notes, and footers.
Medical performance was evaluated by examining the extraction of medical concepts of interest from the text in their respective sections.
arXiv Detail & Related papers (2023-05-23T08:38:33Z) - Jointly Extracting Interventions, Outcomes, and Findings from RCT
Reports with LLMs [21.868871974136884]
We propose and evaluate a text-to-text model built on instruction-tuned Large Language Models.
We apply our model to a collection of published RCTs through mid-2022, and release a searchable database of structured findings.
arXiv Detail & Related papers (2023-05-05T16:02:06Z) - Development and validation of a natural language processing algorithm to
pseudonymize documents in the context of a clinical data warehouse [53.797797404164946]
The study highlights the difficulties faced in sharing tools and resources in this domain.
We annotated a corpus of clinical documents according to 12 types of identifying entities.
We build a hybrid system, merging the results of a deep learning model as well as manual rules.
arXiv Detail & Related papers (2023-03-23T17:17:46Z) - A Unified Framework of Medical Information Annotation and Extraction for
Chinese Clinical Text [1.4841452489515765]
Current state-of-the-art (SOTA) NLP models are highly integrated with deep learning techniques.
This study presents an engineering framework of medical entity recognition, relation extraction and attribute extraction.
arXiv Detail & Related papers (2022-03-08T03:19:16Z) - Assessment of contextualised representations in detecting outcome
phrases in clinical trials [14.584741378279316]
We introduce "EBM-COMET", a dataset in which 300 PubMed abstracts are expertly annotated for clinical outcomes.
To extract outcomes, we fine-tune a variety of pre-trained contextualized representations.
We observe our best model (BioBERT) achieve 81.5% F1, 81.3% sensitivity and 98.0% specificity.
arXiv Detail & Related papers (2022-02-13T15:08:00Z) - CBLUE: A Chinese Biomedical Language Understanding Evaluation Benchmark [51.38557174322772]
We present the first Chinese Biomedical Language Understanding Evaluation benchmark.
It is a collection of natural language understanding tasks including named entity recognition, information extraction, clinical diagnosis normalization, single-sentence/sentence-pair classification.
We report empirical results with the current 11 pre-trained Chinese models, and experimental results show that state-of-the-art neural models perform by far worse than the human ceiling.
arXiv Detail & Related papers (2021-06-15T12:25:30Z) - HINT: Hierarchical Interaction Network for Trial Outcome Prediction
Leveraging Web Data [56.53715632642495]
Clinical trials face uncertain outcomes due to issues with efficacy, safety, or problems with patient recruitment.
In this paper, we propose Hierarchical INteraction Network (HINT) for more general, clinical trial outcome predictions.
arXiv Detail & Related papers (2021-02-08T15:09:07Z) - Understanding Clinical Trial Reports: Extracting Medical Entities and
Their Relations [33.30381080306156]
Medical experts must manually extract information from articles to inform decision-making.
We consider the end-to-end task of both (a) extracting treatments and outcomes from full-text articles describing clinical trials (entity identification) and (b) inferring the reported results for the former with respect to the latter.
arXiv Detail & Related papers (2020-10-07T17:50:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.