Talk2SAM: Text-Guided Semantic Enhancement for Complex-Shaped Object Segmentation
- URL: http://arxiv.org/abs/2506.05396v1
- Date: Tue, 03 Jun 2025 19:53:10 GMT
- Title: Talk2SAM: Text-Guided Semantic Enhancement for Complex-Shaped Object Segmentation
- Authors: Luka Vetoshkin, Dmitry Yudin,
- Abstract summary: We propose Talk2SAM, a novel approach that integrates textual guidance to improve object segmentation.<n>The method uses CLIP-based embeddings derived from user-provided text prompts to identify relevant semantic regions.<n>Talk2SAM consistently outperforms SAM-HQ, achieving up to +5.9% IoU and +8.3% boundary IoU improvements.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Segmenting objects with complex shapes, such as wires, bicycles, or structural grids, remains a significant challenge for current segmentation models, including the Segment Anything Model (SAM) and its high-quality variant SAM-HQ. These models often struggle with thin structures and fine boundaries, leading to poor segmentation quality. We propose Talk2SAM, a novel approach that integrates textual guidance to improve segmentation of such challenging objects. The method uses CLIP-based embeddings derived from user-provided text prompts to identify relevant semantic regions, which are then projected into the DINO feature space. These features serve as additional prompts for SAM-HQ, enhancing its ability to focus on the target object. Beyond improving segmentation accuracy, Talk2SAM allows user-controllable segmentation, enabling disambiguation of objects within a single bounding box based on textual input. We evaluate our approach on three benchmarks: BIG, ThinObject5K, and DIS5K. Talk2SAM consistently outperforms SAM-HQ, achieving up to +5.9\% IoU and +8.3\% boundary IoU improvements. Our results demonstrate that incorporating natural language guidance provides a flexible and effective means for precise object segmentation, particularly in cases where traditional prompt-based methods fail. The source code is available on GitHub: https://github.com/richlukich/Talk2SAM
Related papers
- SAM2-UNeXT: An Improved High-Resolution Baseline for Adapting Foundation Models to Downstream Segmentation Tasks [50.97089872043121]
We propose SAM2-UNeXT, an advanced framework that builds upon the core principles of SAM2-UNet.<n>We extend the representational capacity of SAM2 through the integration of an auxiliary DINOv2 encoder.<n>Our approach enables more accurate segmentation with a simple architecture, relaxing the need for complex decoder designs.
arXiv Detail & Related papers (2025-08-05T15:36:13Z) - SAM-PTx: Text-Guided Fine-Tuning of SAM with Parameter-Efficient, Parallel-Text Adapters [0.5755004576310334]
This paper introduces SAM-PTx, a parameter-efficient approach for adapting SAM using frozen CLIP-derived text embeddings as class-level semantic guidance.<n>Specifically, we propose a lightweight adapter called Parallel-Text that injects text embeddings into SAM's image, enabling semantics-guided segmentation.<n>We show that incorporating fixed text embeddings as input improves segmentation performance over purely spatial prompt baselines.
arXiv Detail & Related papers (2025-07-31T23:26:39Z) - SANSA: Unleashing the Hidden Semantics in SAM2 for Few-Shot Segmentation [4.4700130387278225]
Few-shot segmentation aims to segment unseen object categories from just a handful of annotated examples.<n>We propose SANSA (Semantically AligNed Segment Anything 2), a framework that makes this latent structure explicit.
arXiv Detail & Related papers (2025-05-27T21:51:28Z) - DC-SAM: In-Context Segment Anything in Images and Videos via Dual Consistency [91.30252180093333]
We propose the Dual Consistency SAM (DCSAM) method based on prompttuning to adapt SAM and SAM2 for in-context segmentation.<n>Our key insights are to enhance the features of the SAM's prompt encoder in segmentation by providing high-quality visual prompts.<n>Although the proposed DC-SAM is primarily designed for images, it can be seamlessly extended to the video domain with the support SAM2.
arXiv Detail & Related papers (2025-04-16T13:41:59Z) - SOS: Segment Object System for Open-World Instance Segmentation With Object Priors [2.856781525749652]
We propose an approach to segment arbitrary unknown objects in images by generalizing from a limited set of annotated object classes during training.
Our approach shows strong generalization capabilities on COCO, LVIS, and ADE20k datasets and improves on the precision by up to 81.6% compared to the state-of-the-art.
arXiv Detail & Related papers (2024-09-22T23:35:31Z) - SAM-CP: Marrying SAM with Composable Prompts for Versatile Segmentation [88.80792308991867]
Segment Anything model (SAM) has shown ability to group image pixels into patches, but applying it to semantic-aware segmentation still faces major challenges.<n>This paper presents SAM-CP, a simple approach that establishes two types of composable prompts beyond SAM and composes them for versatile segmentation.<n> Experiments show that SAM-CP achieves semantic, instance, and panoptic segmentation in both open and closed domains.
arXiv Detail & Related papers (2024-07-23T17:47:25Z) - AlignSAM: Aligning Segment Anything Model to Open Context via Reinforcement Learning [61.666973416903005]
Segment Anything Model (SAM) has demonstrated its impressive generalization capabilities in open-world scenarios with the guidance of prompts.
We propose a novel framework, termed AlignSAM, designed for automatic prompting for aligning SAM to an open context.
arXiv Detail & Related papers (2024-06-01T16:21:39Z) - Moving Object Segmentation: All You Need Is SAM (and Flow) [82.78026782967959]
We investigate two models for combining SAM with optical flow that harness the segmentation power of SAM with the ability of flow to discover and group moving objects.
In the first model, we adapt SAM to take optical flow, rather than RGB, as an input. In the second, SAM takes RGB as an input, and flow is used as a segmentation prompt.
These surprisingly simple methods, without any further modifications, outperform all previous approaches by a considerable margin in both single and multi-object benchmarks.
arXiv Detail & Related papers (2024-04-18T17:59:53Z) - SAM-Assisted Remote Sensing Imagery Semantic Segmentation with Object
and Boundary Constraints [9.238103649037951]
We present a framework aimed at leveraging the raw output of SAM by exploiting two novel concepts called SAM-Generated Object (SGO) and SAM-Generated Boundary (SGB)
Taking into account the content characteristics of SGO, we introduce the concept of object consistency to leverage segmented regions lacking semantic information.
The boundary loss capitalizes on the distinctive features of SGB by directing the model's attention to the boundary information of the object.
arXiv Detail & Related papers (2023-12-05T03:33:47Z) - Stable Segment Anything Model [79.9005670886038]
The Segment Anything Model (SAM) achieves remarkable promptable segmentation given high-quality prompts.
This paper presents the first comprehensive analysis on SAM's segmentation stability across a diverse spectrum of prompt qualities.
Our solution, termed Stable-SAM, offers several advantages: 1) improved SAM's segmentation stability across a wide range of prompt qualities, while 2) retaining SAM's powerful promptable segmentation efficiency and generality.
arXiv Detail & Related papers (2023-11-27T12:51:42Z) - Segment Anything Meets Point Tracking [116.44931239508578]
This paper presents a novel method for point-centric interactive video segmentation, empowered by SAM and long-term point tracking.
We highlight the merits of point-based tracking through direct evaluation on the zero-shot open-world Unidentified Video Objects (UVO) benchmark.
Our experiments on popular video object segmentation and multi-object segmentation tracking benchmarks, including DAVIS, YouTube-VOS, and BDD100K, suggest that a point-based segmentation tracker yields better zero-shot performance and efficient interactions.
arXiv Detail & Related papers (2023-07-03T17:58:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.