Differentially Private Federated $k$-Means Clustering with Server-Side Data
- URL: http://arxiv.org/abs/2506.05408v2
- Date: Wed, 11 Jun 2025 09:31:04 GMT
- Title: Differentially Private Federated $k$-Means Clustering with Server-Side Data
- Authors: Jonathan Scott, Christoph H. Lampert, David Saulpic,
- Abstract summary: FedDP-KMeans is an algorithm for $k$-means clustering that is fully-federated as well as differentially private.<n>Our algorithm achieves excellent results on synthetic and real-world benchmark tasks.
- Score: 19.962475029447127
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Clustering is a cornerstone of data analysis that is particularly suited to identifying coherent subgroups or substructures in unlabeled data, as are generated continuously in large amounts these days. However, in many cases traditional clustering methods are not applicable, because data are increasingly being produced and stored in a distributed way, e.g. on edge devices, and privacy concerns prevent it from being transferred to a central server. To address this challenge, we present FedDP-KMeans, a new algorithm for $k$-means clustering that is fully-federated as well as differentially private. Our approach leverages (potentially small and out-of-distribution) server-side data to overcome the primary challenge of differentially private clustering methods: the need for a good initialization. Combining our initialization with a simple federated DP-Lloyds algorithm we obtain an algorithm that achieves excellent results on synthetic and real-world benchmark tasks. We also provide a theoretical analysis of our method that provides bounds on the convergence speed and cluster identification success.
Related papers
- A new type of federated clustering: A non-model-sharing approach [6.5347053452025206]
This study proposes data collaboration clustering (DC-Clustering)<n>DC-Clustering supports clustering over complex data partitioning scenarios where horizontal and vertical splits coexist.<n>Results show that our method achieves clustering performance comparable to centralized clustering where all data are pooled.
arXiv Detail & Related papers (2025-06-11T23:57:26Z) - Dynamically Weighted Federated k-Means [0.0]
Federated clustering enables multiple data sources to collaboratively cluster their data, maintaining decentralization and preserving privacy.
We introduce a novel federated clustering algorithm named Dynamically Weighted Federated k-means (DWF k-means) based on Lloyd's method for k-means clustering.
We conduct experiments on multiple datasets and data distribution settings to evaluate the performance of our algorithm in terms of clustering score, accuracy, and v-measure.
arXiv Detail & Related papers (2023-10-23T12:28:21Z) - Hard Regularization to Prevent Deep Online Clustering Collapse without
Data Augmentation [65.268245109828]
Online deep clustering refers to the joint use of a feature extraction network and a clustering model to assign cluster labels to each new data point or batch as it is processed.
While faster and more versatile than offline methods, online clustering can easily reach the collapsed solution where the encoder maps all inputs to the same point and all are put into a single cluster.
We propose a method that does not require data augmentation, and that, differently from existing methods, regularizes the hard assignments.
arXiv Detail & Related papers (2023-03-29T08:23:26Z) - k-Means SubClustering: A Differentially Private Algorithm with Improved
Clustering Quality [0.0]
Many differentially private iterative algorithms have been proposed in interactive settings to protect an individual's privacy from inference attacks.
In this work, we extend the previous work on 'Differentially Private k-Means Clustering With Convergence Guarantee' by taking it as our baseline.
The novelty of our approach is to sub-cluster the clusters and then select the centroid which has a higher probability of moving in the direction of the future centroid.
arXiv Detail & Related papers (2023-01-07T17:07:12Z) - Differentially Private Federated Clustering over Non-IID Data [59.611244450530315]
clustering clusters (FedC) problem aims to accurately partition unlabeled data samples distributed over massive clients into finite clients under the orchestration of a server.
We propose a novel FedC algorithm using differential privacy convergence technique, referred to as DP-Fed, in which partial participation and multiple clients are also considered.
Various attributes of the proposed DP-Fed are obtained through theoretical analyses of privacy protection, especially for the case of non-identically and independently distributed (non-i.i.d.) data.
arXiv Detail & Related papers (2023-01-03T05:38:43Z) - Privacy-Preserving Federated Deep Clustering based on GAN [12.256298398007848]
We present a novel approach to Federated Deep Clustering based on Generative Adversarial Networks (GANs)
Each client trains a local generative adversarial network (GAN) locally and uploads the synthetic data to the server.
The server applies a deep clustering network on the synthetic data to establish $k$ cluster centroids, which are then downloaded to the clients for cluster assignment.
arXiv Detail & Related papers (2022-11-30T13:20:11Z) - Differentially-Private Clustering of Easy Instances [67.04951703461657]
In differentially private clustering, the goal is to identify $k$ cluster centers without disclosing information on individual data points.
We provide implementable differentially private clustering algorithms that provide utility when the data is "easy"
We propose a framework that allows us to apply non-private clustering algorithms to the easy instances and privately combine the results.
arXiv Detail & Related papers (2021-12-29T08:13:56Z) - Meta Clustering Learning for Large-scale Unsupervised Person
Re-identification [124.54749810371986]
We propose a "small data for big task" paradigm dubbed Meta Clustering Learning (MCL)
MCL only pseudo-labels a subset of the entire unlabeled data via clustering to save computing for the first-phase training.
Our method significantly saves computational cost while achieving a comparable or even better performance compared to prior works.
arXiv Detail & Related papers (2021-11-19T04:10:18Z) - Robust Trimmed k-means [70.88503833248159]
We propose Robust Trimmed k-means (RTKM) that simultaneously identifies outliers and clusters points.
We show RTKM performs competitively with other methods on single membership data with outliers and multi-membership data without outliers.
arXiv Detail & Related papers (2021-08-16T15:49:40Z) - Very Compact Clusters with Structural Regularization via Similarity and
Connectivity [3.779514860341336]
We propose an end-to-end deep clustering algorithm, i.e., Very Compact Clusters (VCC) for the general datasets.
Our proposed approach achieves better clustering performance over most of the state-of-the-art clustering methods.
arXiv Detail & Related papers (2021-06-09T23:22:03Z) - Scalable Hierarchical Agglomerative Clustering [65.66407726145619]
Existing scalable hierarchical clustering methods sacrifice quality for speed.
We present a scalable, agglomerative method for hierarchical clustering that does not sacrifice quality and scales to billions of data points.
arXiv Detail & Related papers (2020-10-22T15:58:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.