Heterogeneous Sequel-Aware Graph Neural Networks for Sequential Learning
- URL: http://arxiv.org/abs/2506.05625v1
- Date: Thu, 05 Jun 2025 22:58:24 GMT
- Title: Heterogeneous Sequel-Aware Graph Neural Networks for Sequential Learning
- Authors: Anushka Tiwari, Haimonti Dutta, Shahrzad Khanizadeh,
- Abstract summary: We show that sequel-aware Graph Neural Networks have better recommendation performance than graph-based recommendation systems that do not consider sequel information.<n>Our results indicate that the incorporation of sequence information from items greatly enhances recommendations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graph-based recommendation systems use higher-order user and item embeddings for next-item predictions. Dynamically adding collaborative signals from neighbors helps to use similar users' preferences during learning. While item-item correlations and their impact on recommendations have been studied, the efficacy of temporal item sequences for recommendations is much less explored. In this paper, we examine temporal item sequence (sequel-aware) embeddings along with higher-order user embeddings and show that sequel-aware Graph Neural Networks have better (or comparable) recommendation performance than graph-based recommendation systems that do not consider sequel information. Extensive empirical results comparing Heterogeneous Sequel-aware Graph Neural Networks (HSAL-GNNs) to other algorithms for sequential learning (such as transformers, graph neural networks, auto-encoders) are presented on three synthetic and three real-world datasets. Our results indicate that the incorporation of sequence information from items greatly enhances recommendations.
Related papers
- Unsupervised Graph Embeddings for Session-based Recommendation with Item Features [10.067724849703321]
In session-based recommender systems, predictions are based on the user's preceding behavior in the session.<n>We propose a novel method, Graph Convolutional Network Extension (GCNext), which incorporates item features directly into the graph representation.<n>Our flexible extension is easy to incorporate in state-of-the-art methods and increases the MRR@20 by up to 12.79%.
arXiv Detail & Related papers (2025-02-19T14:23:18Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - Preference and Concurrence Aware Bayesian Graph Neural Networks for
Recommender Systems [5.465420718331109]
Graph-based collaborative filtering methods have prevailing performance for recommender systems.
We propose an efficient generative model that jointly considers the preferences of users, the concurrence of items and some important graph structure information.
arXiv Detail & Related papers (2023-11-30T11:49:33Z) - GUESR: A Global Unsupervised Data-Enhancement with Bucket-Cluster
Sampling for Sequential Recommendation [58.6450834556133]
We propose graph contrastive learning to enhance item representations with complex associations from the global view.
We extend the CapsNet module with the elaborately introduced target-attention mechanism to derive users' dynamic preferences.
Our proposed GUESR could not only achieve significant improvements but also could be regarded as a general enhancement strategy.
arXiv Detail & Related papers (2023-03-01T05:46:36Z) - Reinforcement Learning based Path Exploration for Sequential Explainable
Recommendation [57.67616822888859]
We propose a novel Temporal Meta-path Guided Explainable Recommendation leveraging Reinforcement Learning (TMER-RL)
TMER-RL utilizes reinforcement item-item path modelling between consecutive items with attention mechanisms to sequentially model dynamic user-item evolutions on dynamic knowledge graph for explainable recommendation.
Extensive evaluations of TMER on two real-world datasets show state-of-the-art performance compared against recent strong baselines.
arXiv Detail & Related papers (2021-11-24T04:34:26Z) - SiReN: Sign-Aware Recommendation Using Graph Neural Networks [6.739000442575012]
We present SiReN, a new sign-aware recommender system based on GNN models.
SiReN consistently outperforms state-of-the-art NE-aided recommendation methods.
arXiv Detail & Related papers (2021-08-19T15:07:06Z) - Position-enhanced and Time-aware Graph Convolutional Network for
Sequential Recommendations [3.286961611175469]
We propose a new deep learning-based sequential recommendation approach based on a Position-enhanced and Time-aware Graph Convolutional Network (PTGCN)
PTGCN models the sequential patterns and temporal dynamics between user-item interactions by defining a position-enhanced and time-aware graph convolution operation.
It realizes the high-order connectivity between users and items by stacking multi-layer graph convolutions.
arXiv Detail & Related papers (2021-07-12T07:34:20Z) - Learning Intents behind Interactions with Knowledge Graph for
Recommendation [93.08709357435991]
Knowledge graph (KG) plays an increasingly important role in recommender systems.
Existing GNN-based models fail to identify user-item relation at a fine-grained level of intents.
We propose a new model, Knowledge Graph-based Intent Network (KGIN)
arXiv Detail & Related papers (2021-02-14T03:21:36Z) - Node2Seq: Towards Trainable Convolutions in Graph Neural Networks [59.378148590027735]
We propose a graph network layer, known as Node2Seq, to learn node embeddings with explicitly trainable weights for different neighboring nodes.
For a target node, our method sorts its neighboring nodes via attention mechanism and then employs 1D convolutional neural networks (CNNs) to enable explicit weights for information aggregation.
In addition, we propose to incorporate non-local information for feature learning in an adaptive manner based on the attention scores.
arXiv Detail & Related papers (2021-01-06T03:05:37Z) - Deep Reinforcement Learning of Graph Matching [63.469961545293756]
Graph matching (GM) under node and pairwise constraints has been a building block in areas from optimization to computer vision.
We present a reinforcement learning solver for GM i.e. RGM that seeks the node correspondence between pairwise graphs.
Our method differs from the previous deep graph matching model in the sense that they are focused on the front-end feature extraction and affinity function learning.
arXiv Detail & Related papers (2020-12-16T13:48:48Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.