Trajectory Entropy: Modeling Game State Stability from Multimodality Trajectory Prediction
- URL: http://arxiv.org/abs/2506.05810v1
- Date: Fri, 06 Jun 2025 07:17:55 GMT
- Title: Trajectory Entropy: Modeling Game State Stability from Multimodality Trajectory Prediction
- Authors: Yesheng Zhang, Wenjian Sun, Yuheng Chen, Qingwei Liu, Qi Lin, Rui Zhang, Xu Zhao,
- Abstract summary: Complex interactions among agents present a significant challenge for autonomous driving in real-world scenarios.<n>Recently, a promising approach has emerged, which formulates the interactions of agents as a level-k game framework.<n>This paper proposes a metric, termed as Trajectory Entropy, to reveal the game status of agents within the level-k game framework.
- Score: 17.677746221426172
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Complex interactions among agents present a significant challenge for autonomous driving in real-world scenarios. Recently, a promising approach has emerged, which formulates the interactions of agents as a level-k game framework. It effectively decouples agent policies by hierarchical game levels. However, this framework ignores both the varying driving complexities among agents and the dynamic changes in agent states across game levels, instead treating them uniformly. Consequently, redundant and error-prone computations are introduced into this framework. To tackle the issue, this paper proposes a metric, termed as Trajectory Entropy, to reveal the game status of agents within the level-k game framework. The key insight stems from recognizing the inherit relationship between agent policy uncertainty and the associated driving complexity. Specifically, Trajectory Entropy extracts statistical signals representing uncertainty from the multimodality trajectory prediction results of agents in the game. Then, the signal-to-noise ratio of this signal is utilized to quantify the game status of agents. Based on the proposed Trajectory Entropy, we refine the current level-k game framework through a simple gating mechanism, significantly improving overall accuracy while reducing computational costs. Our method is evaluated on the Waymo and nuPlan datasets, in terms of trajectory prediction, open-loop and closed-loop planning tasks. The results demonstrate the state-of-the-art performance of our method, with precision improved by up to 19.89% for prediction and up to 16.48% for planning.
Related papers
- DyTTP: Trajectory Prediction with Normalization-Free Transformers [0.0]
Transformer-based architectures have demonstrated significant promise in capturing complex robustnessity dependencies.<n>We present a two-fold approach to address these challenges.<n>First, we integrate DynamicTanh (DyT), which is the latest method to promote transformers, into the backbone, replacing traditional layer normalization.<n>We are the first work to deploy the DyT to the trajectory prediction task.
arXiv Detail & Related papers (2025-04-07T09:26:25Z) - Interactive Autonomous Navigation with Internal State Inference and
Interactivity Estimation [58.21683603243387]
We propose three auxiliary tasks with relational-temporal reasoning and integrate them into the standard Deep Learning framework.
These auxiliary tasks provide additional supervision signals to infer the behavior patterns other interactive agents.
Our approach achieves robust and state-of-the-art performance in terms of standard evaluation metrics.
arXiv Detail & Related papers (2023-11-27T18:57:42Z) - Real-Time Motion Prediction via Heterogeneous Polyline Transformer with
Relative Pose Encoding [121.08841110022607]
Existing agent-centric methods have demonstrated outstanding performance on public benchmarks.
We introduce the K-nearest neighbor attention with relative pose encoding (KNARPE), a novel attention mechanism allowing the pairwise-relative representation to be used by Transformers.
By sharing contexts among agents and reusing the unchanged contexts, our approach is as efficient as scene-centric methods, while performing on par with state-of-the-art agent-centric methods.
arXiv Detail & Related papers (2023-10-19T17:59:01Z) - A Hierarchical Hybrid Learning Framework for Multi-agent Trajectory
Prediction [4.181632607997678]
We propose a hierarchical hybrid framework of deep learning (DL) and reinforcement learning (RL) for multi-agent trajectory prediction.
In the DL stage, the traffic scene is divided into multiple intermediate-scale heterogenous graphs based on which Transformer-style GNNs are adopted to encode heterogenous interactions.
In the RL stage, we divide the traffic scene into local sub-scenes utilizing the key future points predicted in the DL stage.
arXiv Detail & Related papers (2023-03-22T02:47:42Z) - Communication-Critical Planning via Multi-Agent Trajectory Exchange [21.923724399511798]
This paper addresses the task of joint multi-agent perception and planning.
It relates to the real-world challenge of collision-free navigation for connected self-driving vehicles.
arXiv Detail & Related papers (2023-03-10T16:59:24Z) - IPCC-TP: Utilizing Incremental Pearson Correlation Coefficient for Joint
Multi-Agent Trajectory Prediction [73.25645602768158]
IPCC-TP is a novel relevance-aware module based on Incremental Pearson Correlation Coefficient to improve multi-agent interaction modeling.
Our module can be conveniently embedded into existing multi-agent prediction methods to extend original motion distribution decoders.
arXiv Detail & Related papers (2023-03-01T15:16:56Z) - GoRela: Go Relative for Viewpoint-Invariant Motion Forecasting [121.42898228997538]
We propose an efficient shared encoding for all agents and the map without sacrificing accuracy or generalization.
We leverage pair-wise relative positional encodings to represent geometric relationships between the agents and the map elements in a heterogeneous spatial graph.
Our decoder is also viewpoint agnostic, predicting agent goals on the lane graph to enable diverse and context-aware multimodal prediction.
arXiv Detail & Related papers (2022-11-04T16:10:50Z) - Multimodal Trajectory Prediction via Topological Invariance for
Navigation at Uncontrolled Intersections [45.508973373913946]
We focus on decentralized navigation among multiple non-communicating rational agents at street intersections without traffic signs or signals.
Our key insight is that the geometric structure of the intersection and the incentive of agents to move efficiently and avoid collisions (rationality) reduces the space of likely behaviors.
We design Multiple Topologies Prediction (MTP), a data-driven trajectory-prediction mechanism that reconstructs trajectory representations of high-likelihood modes in multiagent intersection scenes.
arXiv Detail & Related papers (2020-11-08T02:56:42Z) - Traffic Agent Trajectory Prediction Using Social Convolution and
Attention Mechanism [57.68557165836806]
We propose a model to predict the trajectories of target agents around an autonomous vehicle.
We encode the target agent history trajectories as an attention mask and construct a social map to encode the interactive relationship between the target agent and its surrounding agents.
To verify the effectiveness of our method, we widely compare with several methods on a public dataset, achieving a 20% error decrease.
arXiv Detail & Related papers (2020-07-06T03:48:08Z) - The Importance of Prior Knowledge in Precise Multimodal Prediction [71.74884391209955]
Roads have well defined geometries, topologies, and traffic rules.
In this paper we propose to incorporate structured priors as a loss function.
We demonstrate the effectiveness of our approach on real-world self-driving datasets.
arXiv Detail & Related papers (2020-06-04T03:56:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.