MAPLE: Multi-Agent Adaptive Planning with Long-Term Memory for Table Reasoning
- URL: http://arxiv.org/abs/2506.05813v1
- Date: Fri, 06 Jun 2025 07:21:28 GMT
- Title: MAPLE: Multi-Agent Adaptive Planning with Long-Term Memory for Table Reasoning
- Authors: Ye Bai, Minghan Wang, Thuy-Trang Vu,
- Abstract summary: Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve.<n>We propose MAPLE, a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop.
- Score: 9.647162327984638
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Table-based question answering requires complex reasoning capabilities that current LLMs struggle to achieve with single-pass inference. Existing approaches, such as Chain-of-Thought reasoning and question decomposition, lack error detection mechanisms and discard problem-solving experiences, contrasting sharply with how humans tackle such problems. In this paper, we propose MAPLE (Multi-agent Adaptive Planning with Long-term mEmory), a novel framework that mimics human problem-solving through specialized cognitive agents working in a feedback-driven loop. MAPLE integrates 4 key components: (1) a Solver using the ReAct paradigm for reasoning, (2) a Checker for answer verification, (3) a Reflector for error diagnosis and strategy correction, and (4) an Archiver managing long-term memory for experience reuse and evolution. Experiments on WiKiTQ and TabFact demonstrate significant improvements over existing methods, achieving state-of-the-art performance across multiple LLM backbones.
Related papers
- Reasoning on a Budget: A Survey of Adaptive and Controllable Test-Time Compute in LLMs [45.83245433138508]
Large language models (LLMs) have rapidly progressed into general-purpose agents capable of solving a broad spectrum of tasks.<n>They apply fixed inference-time compute regardless of task complexity, often overthinking simple problems while underthinking hard ones.<n>This survey presents a comprehensive review of efficient test-time compute strategies, which aim to improve the computational efficiency of LLM reasoning.
arXiv Detail & Related papers (2025-07-02T18:27:42Z) - Reinforcing Question Answering Agents with Minimalist Policy Gradient Optimization [80.09112808413133]
Mujica is a planner that decomposes questions into acyclic graph of subquestions and a worker that resolves questions via retrieval and reasoning.<n>MyGO is a novel reinforcement learning method that replaces traditional policy updates with gradient Likelihood Maximum Estimation.<n> Empirical results across multiple datasets demonstrate the effectiveness of MujicaMyGO in enhancing multi-hop QA performance.
arXiv Detail & Related papers (2025-05-20T18:33:03Z) - MAMM-Refine: A Recipe for Improving Faithfulness in Generation with Multi-Agent Collaboration [63.31211701741323]
We extend multi-agent multi-model reasoning to generation, specifically to improving faithfulness through refinement.<n>We design intrinsic evaluations for each subtask, with our findings indicating that both multi-agent (multiple instances) and multi-model (diverse LLM types) approaches benefit error detection and critiquing.<n>We consolidate these insights into a final "recipe" called Multi-Agent Multi-Model Refinement (MAMM-Refine), where multi-agent and multi-model collaboration significantly boosts performance.
arXiv Detail & Related papers (2025-03-19T14:46:53Z) - MetaLadder: Ascending Mathematical Solution Quality via Analogical-Problem Reasoning Transfer [37.81465564673498]
Large Language Models (LLMs) have demonstrated promising capabilities in solving mathematical reasoning tasks.<n>We propose textbfMetaLadder, a framework that explicitly prompts LLMs to recall and reflect on meta-problems.<n>Our experiments on mathematical benchmarks demonstrate that our MetaLadder significantly boosts LLMs' problem-solving accuracy.
arXiv Detail & Related papers (2025-03-19T04:36:35Z) - FINEREASON: Evaluating and Improving LLMs' Deliberate Reasoning through Reflective Puzzle Solving [90.88021670297664]
FINEREASON is a logic-puzzle benchmark for evaluation of large language models' reasoning capabilities.<n>We introduce two tasks: state checking, and state transition, for a comprehensive evaluation of how models assess the current situation and plan the next move.<n>We show that models trained on our state checking and transition data demonstrate gains in math reasoning by up to 5.1% on GSM8K.
arXiv Detail & Related papers (2025-02-27T16:23:25Z) - Table-Critic: A Multi-Agent Framework for Collaborative Criticism and Refinement in Table Reasoning [3.721438719967748]
Table-Critic is a novel multi-agent framework that facilitates collaborative criticism and iterative refinement of the reasoning process.<n>Our framework consists of four specialized agents: a Judge for error identification, a Critic for comprehensive critiques, a Refiner for process improvement, and a Curator for pattern distillation.<n>Extensive experiments have demonstrated that Table-Critic achieves superior accuracy and error correction rates while maintaining computational efficiency and lower solution degradation rate.
arXiv Detail & Related papers (2025-02-17T13:42:12Z) - Review-Then-Refine: A Dynamic Framework for Multi-Hop Question Answering with Temporal Adaptability [19.722009684115434]
Retrieve-augmented generation (RAG) frameworks have emerged as a promising solution to multi-hop question answering(QA) tasks.<n>Existing RAG frameworks, which usually follows the retrieve-then-read paradigm, often struggle with multi-hop QA with temporal information.<n>This paper proposes a novel framework called review-then-refine, which aims to enhance LLM performance in multi-hop QA scenarios with temporal information.
arXiv Detail & Related papers (2024-12-19T17:48:23Z) - An Entailment Tree Generation Approach for Multimodal Multi-Hop Question Answering with Mixture-of-Experts and Iterative Feedback Mechanism [14.479060028732803]
We argue that the current methods of multi-modal multi-hop question answering still mainly face two challenges.<n>The retrieved evidence containing a large amount of redundant information leads to a significant drop in performance.<n>The reasoning process without interpretable reasoning steps makes the model difficult to discover the logical errors for handling complex questions.
arXiv Detail & Related papers (2024-12-08T05:47:55Z) - Disentangling Memory and Reasoning Ability in Large Language Models [97.26827060106581]
We propose a new inference paradigm that decomposes the complex inference process into two distinct and clear actions.<n>Our experiment results show that this decomposition improves model performance and enhances the interpretability of the inference process.
arXiv Detail & Related papers (2024-11-20T17:55:38Z) - ReST meets ReAct: Self-Improvement for Multi-Step Reasoning LLM Agent [50.508669199496474]
We develop a ReAct-style LLM agent with the ability to reason and act upon external knowledge.
We refine the agent through a ReST-like method that iteratively trains on previous trajectories.
Starting from a prompted large model and after just two iterations of the algorithm, we can produce a fine-tuned small model.
arXiv Detail & Related papers (2023-12-15T18:20:15Z) - Faith and Fate: Limits of Transformers on Compositionality [109.79516190693415]
We investigate the limits of transformer large language models across three representative compositional tasks.
These tasks require breaking problems down into sub-steps and synthesizing these steps into a precise answer.
Our empirical findings suggest that transformer LLMs solve compositional tasks by reducing multi-step compositional reasoning into linearized subgraph matching.
arXiv Detail & Related papers (2023-05-29T23:24:14Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.