Permutation-Free High-Order Interaction Tests
- URL: http://arxiv.org/abs/2506.05963v1
- Date: Fri, 06 Jun 2025 10:42:10 GMT
- Title: Permutation-Free High-Order Interaction Tests
- Authors: Zhaolu Liu, Robert L. Peach, Mauricio Barahona,
- Abstract summary: We introduce a family of permutation-free high-order tests for joint independence and partial factorisations of $d$ variables.<n>Our tests eliminate the need for permutation-based approximations by leveraging V-statistics and a novel cross-centring technique.
- Score: 0.7373617024876725
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Kernel-based hypothesis tests offer a flexible, non-parametric tool to detect high-order interactions in multivariate data, beyond pairwise relationships. Yet the scalability of such tests is limited by the computationally demanding permutation schemes used to generate null approximations. Here we introduce a family of permutation-free high-order tests for joint independence and partial factorisations of $d$ variables. Our tests eliminate the need for permutation-based approximations by leveraging V-statistics and a novel cross-centring technique to yield test statistics with a standard normal limiting distribution under the null. We present implementations of the tests and showcase their efficacy and scalability through synthetic datasets. We also show applications inspired by causal discovery and feature selection, which highlight both the importance of high-order interactions in data and the need for efficient computational methods.
Related papers
- A Sample Efficient Conditional Independence Test in the Presence of Discretization [54.047334792855345]
Conditional Independence (CI) tests directly to discretized data can lead to incorrect conclusions.<n>Recent advancements have sought to infer the correct CI relationship between the latent variables through binarizing observed data.<n>Motivated by this, this paper introduces a sample-efficient CI test that does not rely on the binarization process.
arXiv Detail & Related papers (2025-06-10T12:41:26Z) - Minimax Optimal Kernel Two-Sample Tests with Random Features [8.030917052755195]
We propose a spectral regularized two-sample test based on random Fourier feature (RFF) approximation.<n>We show the proposed test to be minimax optimal if the approximation order of RFF is sufficiently large.<n>We develop a practically implementable permutation-based version of the proposed test with a data-adaptive strategy for selecting the regularization parameter and the kernel.
arXiv Detail & Related papers (2025-02-28T06:12:00Z) - Federated Nonparametric Hypothesis Testing with Differential Privacy Constraints: Optimal Rates and Adaptive Tests [5.3595271893779906]
Federated learning has attracted significant recent attention due to its applicability across a wide range of settings where data is collected and analyzed across disparate locations.
We study federated nonparametric goodness-of-fit testing in the white-noise-with-drift model under distributed differential privacy (DP) constraints.
arXiv Detail & Related papers (2024-06-10T19:25:19Z) - Precise Error Rates for Computationally Efficient Testing [67.30044609837749]
We revisit the question of simple-versus-simple hypothesis testing with an eye towards computational complexity.<n>An existing test based on linear spectral statistics achieves the best possible tradeoff curve between type I and type II error rates.
arXiv Detail & Related papers (2023-11-01T04:41:16Z) - Bootstrapped Edge Count Tests for Nonparametric Two-Sample Inference
Under Heterogeneity [5.8010446129208155]
We develop a new nonparametric testing procedure that accurately detects differences between the two samples.
A comprehensive simulation study and an application to detecting user behaviors in online games demonstrates the excellent non-asymptotic performance of the proposed test.
arXiv Detail & Related papers (2023-04-26T22:25:44Z) - Near-Optimal Non-Parametric Sequential Tests and Confidence Sequences
with Possibly Dependent Observations [44.71254888821376]
We provide the first type-I-error and expected-rejection-time guarantees under general non-data generating processes.
We show how to apply our results to inference on parameters defined by estimating equations, such as average treatment effects.
arXiv Detail & Related papers (2022-12-29T18:37:08Z) - Mutual Exclusivity Training and Primitive Augmentation to Induce
Compositionality [84.94877848357896]
Recent datasets expose the lack of the systematic generalization ability in standard sequence-to-sequence models.
We analyze this behavior of seq2seq models and identify two contributing factors: a lack of mutual exclusivity bias and the tendency to memorize whole examples.
We show substantial empirical improvements using standard sequence-to-sequence models on two widely-used compositionality datasets.
arXiv Detail & Related papers (2022-11-28T17:36:41Z) - Sequential Permutation Testing of Random Forest Variable Importance
Measures [68.8204255655161]
It is proposed here to use sequential permutation tests and sequential p-value estimation to reduce the high computational costs associated with conventional permutation tests.
The results of simulation studies confirm that the theoretical properties of the sequential tests apply.
The numerical stability of the methods is investigated in two additional application studies.
arXiv Detail & Related papers (2022-06-02T20:16:50Z) - Bloom Origami Assays: Practical Group Testing [90.2899558237778]
Group testing is a well-studied problem with several appealing solutions.
Recent biological studies impose practical constraints for COVID-19 that are incompatible with traditional methods.
We develop a new method combining Bloom filters with belief propagation to scale to larger values of n (more than 100) with good empirical results.
arXiv Detail & Related papers (2020-07-21T19:31:41Z) - Good Classifiers are Abundant in the Interpolating Regime [64.72044662855612]
We develop a methodology to compute precisely the full distribution of test errors among interpolating classifiers.
We find that test errors tend to concentrate around a small typical value $varepsilon*$, which deviates substantially from the test error of worst-case interpolating model.
Our results show that the usual style of analysis in statistical learning theory may not be fine-grained enough to capture the good generalization performance observed in practice.
arXiv Detail & Related papers (2020-06-22T21:12:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.