Optimizing entanglement distribution via noisy quantum channels
- URL: http://arxiv.org/abs/2506.06089v1
- Date: Fri, 06 Jun 2025 13:48:20 GMT
- Title: Optimizing entanglement distribution via noisy quantum channels
- Authors: Piotr Masajada, Marco Fellous-Asiani, Alexander Streltsov,
- Abstract summary: Entanglement distribution is a crucial problem in quantum information science.<n>We investigate strategies for distributing quantum entanglement between two distant parties through noisy quantum channels.
- Score: 44.99833362998488
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Entanglement distribution is a crucial problem in quantum information science, owing to the essential role that entanglement plays in enabling advanced quantum protocols, including quantum teleportation and quantum cryptography. We investigate strategies for distributing quantum entanglement between two distant parties through noisy quantum channels. Specifically, we compare two configurations: one where the entanglement source is placed at the midpoint of the communication line, and another where it is located at one end. For certain families of qubit channels we show analytically that the midpoint strategy is optimal. Based on extensive numerical analysis, we conjecture that this strategy is generally optimal for all qubit channels. Focusing on the midpoint configuration, we develop semidefinite programming (SDP) techniques to assess whether entanglement can be successfully distributed through the network, and to quantify the amount of entanglement that can be distributed in the process. In many relevant cases the SDP formulation reliably captures the maximal amount of entanglement which can be distributed, if entanglement is quantified using the negativity. We analyze several channel models and demonstrate that, for various combinations of amplitude damping and depolarizing noise, entanglement distribution is only possible with weakly entangled input states. Excessive entanglement in the input state can hinder the channel's ability to establish entanglement. Our findings have implications for optimizing entanglement distribution in realistic quantum communication networks.
Related papers
- Controlled quantum secure remote sensing [0.6749750044497732]
decoherence in the quantum communication channel and during the evolution of quantum states can erode quantum sensing advantages.<n>We introduce a modified protocol incorporating local quantum optimal control (QOC) operations to address noise in SQS.<n>The protocol actively mitigates noise, enhancing the achievable quantum Fisher information (QFI) and the classical Fisher information (CFI) based on the chosen measurement strategy.
arXiv Detail & Related papers (2025-04-25T06:10:58Z) - Quantum Advantage in Distributed Sensing with Noisy Quantum Networks [37.23288214515363]
We show that quantum advantage in distributed sensing can be achieved with noisy quantum networks which can only distribute noisy entangled states.<n>We demonstrate that the probe state with potential for quantum advantage in distributed sensing can be prepared by a three-node quantum network.
arXiv Detail & Related papers (2024-09-25T16:55:07Z) - Unextendible entanglement of quantum channels [4.079147243688764]
We study the ability of quantum channels to perform quantum communication tasks.
A quantum channel can distill a highly entangled state between two parties.
We generalize the formalism of $k$-extendibility to bipartite superchannels.
arXiv Detail & Related papers (2024-07-22T18:00:17Z) - Power Characterization of Noisy Quantum Kernels [52.47151453259434]
We show that noise may make quantum kernel methods to only have poor prediction capability, even when the generalization error is small.
We provide a crucial warning to employ noisy quantum kernel methods for quantum computation.
arXiv Detail & Related papers (2024-01-31T01:02:16Z) - Entanglement Distribution and Quantum Teleportation in Higher Dimension
over the Superposition of Causal Orders of Quantum Channels [13.359442837017202]
We develop and formulate the theoretical framework for transmission of classical information through entanglement distribution of qudits over two quantum channels.
Results show that entanglement distribution of a qudit provides a considerable gain in fidelity even with increase in noise.
arXiv Detail & Related papers (2023-03-19T15:06:24Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Exact solution for the quantum and private capacities of bosonic
dephasing channels [10.787390511207686]
We provide the first exact calculation of the quantum, private, two-way assisted quantum, and secret-key capacities of bosonic dephasing channels.
arXiv Detail & Related papers (2022-05-11T19:12:12Z) - Entanglement catalysis for quantum states and noisy channels [41.94295877935867]
We investigate properties of entanglement and its role for quantum communication.
For transformations between bipartite pure states, we prove the existence of a universal catalyst.
We further develop methods to estimate the number of singlets which can be established via a noisy quantum channel.
arXiv Detail & Related papers (2022-02-10T18:36:25Z) - Learnability of the output distributions of local quantum circuits [53.17490581210575]
We investigate, within two different oracle models, the learnability of quantum circuit Born machines.
We first show a negative result, that the output distributions of super-logarithmic depth Clifford circuits are not sample-efficiently learnable.
We show that in a more powerful oracle model, namely when directly given access to samples, the output distributions of local Clifford circuits are computationally efficiently PAC learnable.
arXiv Detail & Related papers (2021-10-11T18:00:20Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - Creating and destroying coherence with quantum channels [62.997667081978825]
We study optimal ways to create a large amount of quantum coherence via quantum channels.
correlations in multipartite systems do not enhance the ability of a quantum channel to create coherence.
We show that a channel can destroy more coherence when acting on a subsystem of a bipartite state.
arXiv Detail & Related papers (2021-05-25T16:44:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.