Synthetic Tabular Data: Methods, Attacks and Defenses
- URL: http://arxiv.org/abs/2506.06108v1
- Date: Fri, 06 Jun 2025 14:16:57 GMT
- Title: Synthetic Tabular Data: Methods, Attacks and Defenses
- Authors: Graham Cormode, Samuel Maddock, Enayat Ullah, Shripad Gade,
- Abstract summary: Synthetic data is often positioned as a solution to replace sensitive fixed-size datasets with a source of unlimited matching data, freed from privacy concerns.<n>There has been much progress in synthetic data generation over the last decade, leveraging corresponding advances in machine learning and data analytics.
- Score: 12.374541748245843
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Synthetic data is often positioned as a solution to replace sensitive fixed-size datasets with a source of unlimited matching data, freed from privacy concerns. There has been much progress in synthetic data generation over the last decade, leveraging corresponding advances in machine learning and data analytics. In this survey, we cover the key developments and the main concepts in tabular synthetic data generation, including paradigms based on probabilistic graphical models and on deep learning. We provide background and motivation, before giving a technical deep-dive into the methodologies. We also address the limitations of synthetic data, by studying attacks that seek to retrieve information about the original sensitive data. Finally, we present extensions and open problems in this area.
Related papers
- Second FRCSyn-onGoing: Winning Solutions and Post-Challenge Analysis to Improve Face Recognition with Synthetic Data [104.30479583607918]
2nd FRCSyn-onGoing challenge is based on the 2nd Face Recognition Challenge in the Era of Synthetic Data (FRCSyn), originally launched at CVPR 2024.<n>We focus on exploring the use of synthetic data both individually and in combination with real data to solve current challenges in face recognition.
arXiv Detail & Related papers (2024-12-02T11:12:01Z) - Exploring the Landscape for Generative Sequence Models for Specialized Data Synthesis [0.0]
This paper introduces a novel approach that leverages three generative models of varying complexity to synthesize Malicious Network Traffic.
Our approach transforms numerical data into text, re-framing data generation as a language modeling task.
Our method surpasses state-of-the-art generative models in producing high-fidelity synthetic data.
arXiv Detail & Related papers (2024-11-04T09:51:10Z) - Best Practices and Lessons Learned on Synthetic Data [83.63271573197026]
The success of AI models relies on the availability of large, diverse, and high-quality datasets.
Synthetic data has emerged as a promising solution by generating artificial data that mimics real-world patterns.
arXiv Detail & Related papers (2024-04-11T06:34:17Z) - Boosting Data Analytics With Synthetic Volume Expansion [3.568650932986342]
This article explores the effectiveness of statistical methods on synthetic data and the privacy risks of synthetic data.
A key finding within this framework is the generational effect, which reveals that the error rate of statistical methods on synthetic data decreases with the addition of more synthetic data but may eventually rise or stabilize.
arXiv Detail & Related papers (2023-10-27T01:57:27Z) - Reimagining Synthetic Tabular Data Generation through Data-Centric AI: A
Comprehensive Benchmark [56.8042116967334]
Synthetic data serves as an alternative in training machine learning models.
ensuring that synthetic data mirrors the complex nuances of real-world data is a challenging task.
This paper explores the potential of integrating data-centric AI techniques to guide the synthetic data generation process.
arXiv Detail & Related papers (2023-10-25T20:32:02Z) - Deep Generative Models, Synthetic Tabular Data, and Differential
Privacy: An Overview and Synthesis [2.8391355909797644]
This article provides a comprehensive synthesis of the recent developments in synthetic data generation via deep generative models.
We specifically outline the importance of synthetic data generation in the context of privacy-sensitive data.
arXiv Detail & Related papers (2023-07-28T09:17:03Z) - Privacy-Preserving Graph Machine Learning from Data to Computation: A
Survey [67.7834898542701]
We focus on reviewing privacy-preserving techniques of graph machine learning.
We first review methods for generating privacy-preserving graph data.
Then we describe methods for transmitting privacy-preserved information.
arXiv Detail & Related papers (2023-07-10T04:30:23Z) - Beyond Privacy: Navigating the Opportunities and Challenges of Synthetic
Data [91.52783572568214]
Synthetic data may become a dominant force in the machine learning world, promising a future where datasets can be tailored to individual needs.
We discuss which fundamental challenges the community needs to overcome for wider relevance and application of synthetic data.
arXiv Detail & Related papers (2023-04-07T16:38:40Z) - Machine Learning for Synthetic Data Generation: A Review [23.073056971997715]
This paper reviews existing studies that employ machine learning models for the purpose of generating synthetic data.
The review encompasses various perspectives, starting with the applications of synthetic data generation, spanning computer vision, speech, natural language processing, healthcare, and business domains.
The paper also addresses the crucial aspects of privacy and fairness concerns related to synthetic data generation.
arXiv Detail & Related papers (2023-02-08T13:59:31Z) - A Comprehensive Survey of Dataset Distillation [73.15482472726555]
It has become challenging to handle the unlimited growth of data with limited computing power.
Deep learning technology has developed unprecedentedly in the last decade.
This paper provides a holistic understanding of dataset distillation from multiple aspects.
arXiv Detail & Related papers (2023-01-13T15:11:38Z) - Foundations of Bayesian Learning from Synthetic Data [1.6249267147413522]
We use a Bayesian paradigm to characterise the updating of model parameters when learning on synthetic data.
Recent results from general Bayesian updating support a novel and robust approach to synthetic-learning founded on decision theory.
arXiv Detail & Related papers (2020-11-16T21:49:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.