CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
- URL: http://arxiv.org/abs/2506.06144v1
- Date: Fri, 06 Jun 2025 15:02:30 GMT
- Title: CLaMR: Contextualized Late-Interaction for Multimodal Content Retrieval
- Authors: David Wan, Han Wang, Elias Stengel-Eskin, Jaemin Cho, Mohit Bansal,
- Abstract summary: We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata.<n>CLaMR is trained to enhance dynamic modality selection via two key innovations.
- Score: 70.9990850395981
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Online video web content is richly multimodal: a single video blends vision, speech, ambient audio, and on-screen text. Retrieval systems typically treat these modalities as independent retrieval sources, which can lead to noisy and subpar retrieval. We explore multimodal video content retrieval, where relevance can be scored from one particular modality or jointly across multiple modalities simultaneously. Consequently, an effective retriever must dynamically choose which modality (or set of modalities) best addresses the query. We introduce CLaMR, a multimodal, late-interaction retriever that jointly indexes 4 modalities: video frames, transcribed speech, on-screen text, and metadata. CLaMR jointly encodes all modalities with a unified multimodal backbone for improved contextualization and is trained to enhance dynamic modality selection via two key innovations. First, given the lack of training data for multimodal retrieval, we introduce MultiVENT 2.0++, a large-scale synthetic training dataset built on MultiVENT 2.0 (event-centric videos in various languages paired with queries) with modality-targeted queries. Next, we propose a modality-aware loss that jointly trains according to a standard contrastive objective alongside an objective for learning correct modality usage. On the test sets of MultiVENT 2.0++ and MSRVTT, conventional aggregation strategies, such as averaging similarities for baseline retrievers, degrade performance by introducing noise from irrelevant modalities. In contrast, CLaMR consistently outperforms existing retrievers: on MultiVENT 2.0++, CLaMR improves nDCG@10 by 25.6 over the best single-modality retriever and by 35.4 over the best multi-modality retriever. We illustrate CLaMR's downstream utility on long-video QA, retrieving relevant frames and obtaining a 3.50% boost over LanguageBind on Video-MME and 1.42% over dense sampling on LongVideoBench.
Related papers
- Engagement Prediction of Short Videos with Large Multimodal Models [46.954597097369586]
We empirically investigate the potential of large multimodal models (LMMs) for video engagement prediction.<n>VideoLLaMA2 processes key video frames, text-based metadata, and background sound, while Qwen2.5-VL utilizes only key video frames and text-based metadata.<n>By ensembling two types of models, our method achieves first place in the ICCV VQualA 2025 EVQA-SnapUGC Challenge on short-form video engagement prediction.
arXiv Detail & Related papers (2025-08-04T15:21:29Z) - MMMORRF: Multimodal Multilingual Modularized Reciprocal Rank Fusion [43.725594356981254]
We create a search system that extracts text and features from both visual and audio modalities.<n> MMMORRF is both effective and efficient, demonstrating practicality in searching videos based on users' information needs.
arXiv Detail & Related papers (2025-03-26T16:28:04Z) - Benchmarking Retrieval-Augmented Generation in Multi-Modal Contexts [56.7225771305861]
This paper introduces Multi-Modal Retrieval-Augmented Generation (M$2$RAG), a benchmark designed to evaluate the effectiveness of Multi-modal Large Language Models.<n>The benchmark comprises four tasks: image captioning, multi-modal question answering, multi-modal fact verification, and image reranking.<n>To enhance the context utilization capabilities of MLLMs, we also introduce Multi-Modal Retrieval-Augmented Instruction Tuning (MM-RAIT)
arXiv Detail & Related papers (2025-02-24T16:25:25Z) - MM-Embed: Universal Multimodal Retrieval with Multimodal LLMs [78.5013630951288]
This paper introduces techniques for advancing information retrieval with multimodal large language models (MLLMs)<n>We first study fine-tuning an MLLM as a bi-encoder retriever on 10 datasets with 16 retrieval tasks.<n>Our model, MM-Embed, achieves state-of-the-art performance on the multimodal retrieval benchmark M-BEIR.
arXiv Detail & Related papers (2024-11-04T20:06:34Z) - VIMI: Grounding Video Generation through Multi-modal Instruction [89.90065445082442]
Existing text-to-video diffusion models rely solely on text-only encoders for their pretraining.
We construct a large-scale multimodal prompt dataset by employing retrieval methods to pair in-context examples with the given text prompts.
We finetune the model from the first stage on three video generation tasks, incorporating multi-modal instructions.
arXiv Detail & Related papers (2024-07-08T18:12:49Z) - Improving Video Corpus Moment Retrieval with Partial Relevance Enhancement [72.7576395034068]
Video Corpus Moment Retrieval (VCMR) is a new video retrieval task aimed at retrieving a relevant moment from a large corpus of untrimmed videos using a text query.
We argue that effectively capturing the partial relevance between the query and video is essential for the VCMR task.
For video retrieval, we introduce a multi-modal collaborative video retriever, generating different query representations for the two modalities.
For moment localization, we propose the focus-then-fuse moment localizer, utilizing modality-specific gates to capture essential content.
arXiv Detail & Related papers (2024-02-21T07:16:06Z) - M2HF: Multi-level Multi-modal Hybrid Fusion for Text-Video Retrieval [34.343617836027725]
We propose a multi-level multi-modal hybrid fusion network to explore comprehensive interactions between text queries and each modality content in videos.
Our framework provides two kinds of training strategies, including an ensemble manner and an end-to-end manner.
arXiv Detail & Related papers (2022-08-16T10:51:37Z) - See, Hear, Read: Leveraging Multimodality with Guided Attention for
Abstractive Text Summarization [14.881597737762316]
We introduce the first large-scale dataset for abstractive text summarization with videos of diverse duration, compiled from presentations in well-known academic conferences like NDSS, ICML, NeurIPS, etc.
We then propose name, a factorized multi-modal Transformer based decoder-only language model, which inherently captures the intra-modal and inter-modal dynamics within various input modalities for the text summarization task.
arXiv Detail & Related papers (2021-05-20T08:56:33Z) - DeepQAMVS: Query-Aware Hierarchical Pointer Networks for Multi-Video
Summarization [127.16984421969529]
We introduce a novel Query-Aware Hierarchical Pointer Network for Multi-Video Summarization, termed DeepQAMVS.
DeepQAMVS is trained with reinforcement learning, incorporating rewards that capture representativeness, diversity, query-adaptability and temporal coherence.
We achieve state-of-the-art results on the MVS1K dataset, with inference time scaling linearly with the number of input video frames.
arXiv Detail & Related papers (2021-05-13T17:33:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.