Optimizing Recall or Relevance? A Multi-Task Multi-Head Approach for Item-to-Item Retrieval in Recommendation
- URL: http://arxiv.org/abs/2506.06239v1
- Date: Fri, 06 Jun 2025 17:00:20 GMT
- Title: Optimizing Recall or Relevance? A Multi-Task Multi-Head Approach for Item-to-Item Retrieval in Recommendation
- Authors: Jiang Zhang, Sumit Kumar, Wei Chang, Yubo Wang, Feng Zhang, Weize Mao, Hanchao Yu, Aashu Singh, Min Li, Qifan Wang,
- Abstract summary: We propose a Multi-Task and Multi-Head I2I retrieval model that achieves both high recall and semantic relevance.<n>We evaluate MTMH using proprietary data from a commercial platform serving billions of users and demonstrate that it can improve recall by up to 14.4% and semantic relevance by up to 56.6%.
- Score: 23.61568268070558
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The task of item-to-item (I2I) retrieval is to identify a set of relevant and highly engaging items based on a given trigger item. It is a crucial component in modern recommendation systems, where users' previously engaged items serve as trigger items to retrieve relevant content for future engagement. However, existing I2I retrieval models in industry are primarily built on co-engagement data and optimized using the recall measure, which overly emphasizes co-engagement patterns while failing to capture semantic relevance. This often leads to overfitting short-term co-engagement trends at the expense of long-term benefits such as discovering novel interests and promoting content diversity. To address this challenge, we propose MTMH, a Multi-Task and Multi-Head I2I retrieval model that achieves both high recall and semantic relevance. Our model consists of two key components: 1) a multi-task learning loss for formally optimizing the trade-off between recall and semantic relevance, and 2) a multi-head I2I retrieval architecture for retrieving both highly co-engaged and semantically relevant items. We evaluate MTMH using proprietary data from a commercial platform serving billions of users and demonstrate that it can improve recall by up to 14.4% and semantic relevance by up to 56.6% compared with prior state-of-the-art models. We also conduct live experiments to verify that MTMH can enhance both short-term consumption metrics and long-term user-experience-related metrics. Our work provides a principled approach for jointly optimizing I2I recall and semantic relevance, which has significant implications for improving the overall performance of recommendation systems.
Related papers
- Balancing Semantic Relevance and Engagement in Related Video Recommendations [21.2575040646784]
Related video recommendations commonly use collaborative filtering (CF) driven by co-engagement signals.<n>This paper introduces a novel multi-objective retrieval framework to balance semantic relevance and user engagement.
arXiv Detail & Related papers (2025-07-12T21:04:25Z) - Research on E-Commerce Long-Tail Product Recommendation Mechanism Based on Large-Scale Language Models [7.792622257477251]
We propose a novel long-tail product recommendation mechanism that integrates product text descriptions and user behavior sequences using a large-scale language model (LLM)<n>Our work highlights the potential of LLMs in interpreting product content and user intent, offering a promising direction for future e-commerce recommendation systems.
arXiv Detail & Related papers (2025-05-31T19:17:48Z) - Multi-agents based User Values Mining for Recommendation [52.26100802380767]
We propose a zero-shot multi-LLM collaborative framework for effective and accurate user value extraction.<n>We apply text summarization techniques to condense item content while preserving essential meaning.<n>To mitigate hallucinations, we introduce two specialized agent roles: evaluators and supervisors.
arXiv Detail & Related papers (2025-05-02T04:01:31Z) - Automated Query-Product Relevance Labeling using Large Language Models for E-commerce Search [3.392843594990172]
Traditional approaches for annotating query-product pairs rely on human-based labeling services.<n>We show that Large Language Models (LLMs) can approach human-level accuracy on this task in a fraction of the time and cost required by human-labelers.<n>This scalable alternative to human-annotation has significant implications for information retrieval domains.
arXiv Detail & Related papers (2025-02-21T22:59:36Z) - LLM-based Bi-level Multi-interest Learning Framework for Sequential Recommendation [54.396000434574454]
We propose a novel multi-interest SR framework combining implicit behavioral and explicit semantic perspectives.<n>It includes two modules: the Implicit Behavioral Interest Module and the Explicit Semantic Interest Module.<n>Experiments on four real-world datasets validate the framework's effectiveness and practicality.
arXiv Detail & Related papers (2024-11-14T13:00:23Z) - Large Language Models for Relevance Judgment in Product Search [48.56992980315751]
High relevance of retrieved and re-ranked items to the search query is the cornerstone of successful product search.
We present an array of techniques for leveraging Large Language Models (LLMs) for automating the relevance judgment of query-item pairs (QIPs) at scale.
Our findings have immediate implications for the growing field of relevance judgment automation in product search.
arXiv Detail & Related papers (2024-06-01T00:52:41Z) - Dual-Gated Fusion with Prefix-Tuning for Multi-Modal Relation Extraction [13.454953507205278]
Multi-Modal Relation Extraction aims at identifying the relation between two entities in texts that contain visual clues.
We propose a novel MMRE framework to better capture the deeper correlations of text, entity pair, and image/objects.
Our approach achieves excellent performance compared to strong competitors, even in the few-shot situation.
arXiv Detail & Related papers (2023-06-19T15:31:34Z) - Entity-Graph Enhanced Cross-Modal Pretraining for Instance-level Product
Retrieval [152.3504607706575]
This research aims to conduct weakly-supervised multi-modal instance-level product retrieval for fine-grained product categories.
We first contribute the Product1M datasets, and define two real practical instance-level retrieval tasks.
We exploit to train a more effective cross-modal model which is adaptively capable of incorporating key concept information from the multi-modal data.
arXiv Detail & Related papers (2022-06-17T15:40:45Z) - Sequential Search with Off-Policy Reinforcement Learning [48.88165680363482]
We propose a highly scalable hybrid learning model that consists of an RNN learning framework and an attention model.
As a novel optimization step, we fit multiple short user sequences in a single RNN pass within a training batch, by solving a greedy knapsack problem on the fly.
We also explore the use of off-policy reinforcement learning in multi-session personalized search ranking.
arXiv Detail & Related papers (2022-02-01T06:52:40Z) - Sequential Recommender via Time-aware Attentive Memory Network [67.26862011527986]
We propose a temporal gating methodology to improve attention mechanism and recurrent units.
We also propose a Multi-hop Time-aware Attentive Memory network to integrate long-term and short-term preferences.
Our approach is scalable for candidate retrieval tasks and can be viewed as a non-linear generalization of latent factorization for dot-product based Top-K recommendation.
arXiv Detail & Related papers (2020-05-18T11:29:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.