Optimized Local Updates in Federated Learning via Reinforcement Learning
- URL: http://arxiv.org/abs/2506.06337v1
- Date: Sat, 31 May 2025 19:32:42 GMT
- Title: Optimized Local Updates in Federated Learning via Reinforcement Learning
- Authors: Ali Murad, Bo Hui, Wei-Shinn Ku,
- Abstract summary: Federated Learning (FL) is a distributed framework for collaborative model training over large-scale distributed data.<n>We devise a novel framework that leverages a Deep Reinforcement Learning (DRL) agent to select an optimized amount of data necessary to train a client model.<n>We demonstrate that training FL clients through our algorithm results in superior performance on multiple benchmark datasets and FL frameworks.
- Score: 18.672807303949728
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Federated Learning (FL) is a distributed framework for collaborative model training over large-scale distributed data, enabling higher performance while maintaining client data privacy. However, the nature of model aggregation at the centralized server can result in a performance drop in the presence of non-IID data across different clients. We remark that training a client locally on more data than necessary does not benefit the overall performance of all clients. In this paper, we devise a novel framework that leverages a Deep Reinforcement Learning (DRL) agent to select an optimized amount of data necessary to train a client model without oversharing information with the server. Starting without awareness of the client's performance, the DRL agent utilizes the change in training loss as a reward signal and learns to optimize the amount of training data necessary for improving the client's performance. Specifically, after each aggregation round, the DRL algorithm considers the local performance as the current state and outputs the optimized weights for each class, in the training data, to be used during the next round of local training. In doing so, the agent learns a policy that creates an optimized partition of the local training dataset during the FL rounds. After FL, the client utilizes the entire local training dataset to further enhance its performance on its own data distribution, mitigating the non-IID effects of aggregation. Through extensive experiments, we demonstrate that training FL clients through our algorithm results in superior performance on multiple benchmark datasets and FL frameworks. Our code is available at https://github.com/amuraddd/optimized_client_training.git.
Related papers
- Local Data Quantity-Aware Weighted Averaging for Federated Learning with Dishonest Clients [32.11272564261484]
Federated learning (FL) enables collaborative training of deep learning models without requiring data to leave local clients.<n>Most commonly used aggregation method is weighted averaging based on the amount of data from each client, which is thought to reflect each client's contribution.<n>We propose a novel secure underlineFederated underlineData qunderlineuantity-underlineaware weighted averaging method (FedDua)<n>It enables FL servers to accurately predict the amount of training data from each client based on their local model gradients uploaded.
arXiv Detail & Related papers (2025-04-17T01:50:24Z) - An Aggregation-Free Federated Learning for Tackling Data Heterogeneity [50.44021981013037]
Federated Learning (FL) relies on the effectiveness of utilizing knowledge from distributed datasets.
Traditional FL methods adopt an aggregate-then-adapt framework, where clients update local models based on a global model aggregated by the server from the previous training round.
We introduce FedAF, a novel aggregation-free FL algorithm.
arXiv Detail & Related papers (2024-04-29T05:55:23Z) - Towards Instance-adaptive Inference for Federated Learning [80.38701896056828]
Federated learning (FL) is a distributed learning paradigm that enables multiple clients to learn a powerful global model by aggregating local training.
In this paper, we present a novel FL algorithm, i.e., FedIns, to handle intra-client data heterogeneity by enabling instance-adaptive inference in the FL framework.
Our experiments show that our FedIns outperforms state-of-the-art FL algorithms, e.g., a 6.64% improvement against the top-performing method with less than 15% communication cost on Tiny-ImageNet.
arXiv Detail & Related papers (2023-08-11T09:58:47Z) - FedSampling: A Better Sampling Strategy for Federated Learning [81.85411484302952]
Federated learning (FL) is an important technique for learning models from decentralized data in a privacy-preserving way.
Existing FL methods usually uniformly sample clients for local model learning in each round.
We propose a novel data uniform sampling strategy for federated learning (FedSampling)
arXiv Detail & Related papers (2023-06-25T13:38:51Z) - Federated Learning for Semantic Parsing: Task Formulation, Evaluation
Setup, New Algorithms [29.636944156801327]
Multiple clients collaboratively train one global model without sharing their semantic parsing data.
Lorar adjusts each client's contribution to the global model update based on its training loss reduction during each round.
Clients with smaller datasets enjoy larger performance gains.
arXiv Detail & Related papers (2023-05-26T19:25:49Z) - Visual Prompt Based Personalized Federated Learning [83.04104655903846]
We propose a novel PFL framework for image classification tasks, dubbed pFedPT, that leverages personalized visual prompts to implicitly represent local data distribution information of clients.
Experiments on the CIFAR10 and CIFAR100 datasets show that pFedPT outperforms several state-of-the-art (SOTA) PFL algorithms by a large margin in various settings.
arXiv Detail & Related papers (2023-03-15T15:02:15Z) - Optimizing Server-side Aggregation For Robust Federated Learning via
Subspace Training [80.03567604524268]
Non-IID data distribution across clients and poisoning attacks are two main challenges in real-world federated learning systems.
We propose SmartFL, a generic approach that optimize the server-side aggregation process.
We provide theoretical analyses of the convergence and generalization capacity for SmartFL.
arXiv Detail & Related papers (2022-11-10T13:20:56Z) - FLIS: Clustered Federated Learning via Inference Similarity for Non-IID
Data Distribution [7.924081556869144]
We present a new algorithm, FLIS, which groups the clients population in clusters with jointly trainable data distributions.
We present experimental results to demonstrate the benefits of FLIS over the state-of-the-art benchmarks on CIFAR-100/10, SVHN, and FMNIST datasets.
arXiv Detail & Related papers (2022-08-20T22:10:48Z) - Acceleration of Federated Learning with Alleviated Forgetting in Local
Training [61.231021417674235]
Federated learning (FL) enables distributed optimization of machine learning models while protecting privacy.
We propose FedReg, an algorithm to accelerate FL with alleviated knowledge forgetting in the local training stage.
Our experiments demonstrate that FedReg not only significantly improves the convergence rate of FL, especially when the neural network architecture is deep.
arXiv Detail & Related papers (2022-03-05T02:31:32Z) - Data Selection for Efficient Model Update in Federated Learning [0.07614628596146598]
We propose to reduce the amount of local data that is needed to train a global model.
We do this by splitting the model into a lower part for generic feature extraction and an upper part that is more sensitive to the characteristics of the local data.
Our experiments show that less than 1% of the local data can transfer the characteristics of the client data to the global model.
arXiv Detail & Related papers (2021-11-05T14:07:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.