Unified Game Moderation: Soft-Prompting and LLM-Assisted Label Transfer for Resource-Efficient Toxicity Detection
- URL: http://arxiv.org/abs/2506.06347v1
- Date: Sun, 01 Jun 2025 20:50:43 GMT
- Title: Unified Game Moderation: Soft-Prompting and LLM-Assisted Label Transfer for Resource-Efficient Toxicity Detection
- Authors: Zachary Yang, Domenico Tullo, Reihaneh Rabbany,
- Abstract summary: Toxicity detection in gaming communities faces significant scaling challenges when expanding across multiple games and languages.<n>We present two key findings to address these challenges while building upon our previous work on ToxBuster, a BERT-based real-time toxicity detection system.
- Score: 4.779196219827507
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Toxicity detection in gaming communities faces significant scaling challenges when expanding across multiple games and languages, particularly in real-time environments where computational efficiency is crucial. We present two key findings to address these challenges while building upon our previous work on ToxBuster, a BERT-based real-time toxicity detection system. First, we introduce a soft-prompting approach that enables a single model to effectively handle multiple games by incorporating game-context tokens, matching the performance of more complex methods like curriculum learning while offering superior scalability. Second, we develop an LLM-assisted label transfer framework using GPT-4o-mini to extend support to seven additional languages. Evaluations on real game chat data across French, German, Portuguese, and Russian achieve macro F1-scores ranging from 32.96% to 58.88%, with particularly strong performance in German, surpassing the English benchmark of 45.39%. In production, this unified approach significantly reduces computational resources and maintenance overhead compared to maintaining separate models for each game and language combination. At Ubisoft, this model successfully identifies an average of 50 players, per game, per day engaging in sanctionable behavior.
Related papers
- NeoBabel: A Multilingual Open Tower for Visual Generation [32.79724699684266]
We introduce NeoBabel, a novel multilingual image generation framework.<n>It supports six languages: English, Chinese, Dutch, French, Hindi, and Persian.<n>It achieves state-of-the-art multilingual performance while retaining strong English capability.
arXiv Detail & Related papers (2025-07-08T16:19:45Z) - Cross-Lingual Pitfalls: Automatic Probing Cross-Lingual Weakness of Multilingual Large Language Models [55.14276067678253]
This paper introduces a novel methodology for efficiently identifying inherent cross-lingual weaknesses in Large Language Models (LLMs)<n>We construct a new dataset of over 6,000 bilingual pairs across 16 languages using this methodology, demonstrating its effectiveness in revealing weaknesses even in state-of-the-art models.<n>Further experiments investigate the relationship between linguistic similarity and cross-lingual weaknesses, revealing that linguistically related languages share similar performance patterns.
arXiv Detail & Related papers (2025-05-24T12:31:27Z) - Multi-agent KTO: Reinforcing Strategic Interactions of Large Language Model in Language Game [32.791648070823776]
We propose that language agents can learn through in-context interaction.<n>We develop the Multi-agent Kahneman & Tversky's Optimization (MaKTO)<n>MaKTO achieves a 61% average win rate across various models.
arXiv Detail & Related papers (2025-01-24T04:09:03Z) - Breaking Language Barriers in Multilingual Mathematical Reasoning: Insights and Observations [59.056367787688146]
This paper pioneers exploring and training powerful Multilingual Math Reasoning (xMR) LLMs.
We construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
By utilizing translation, we construct the first multilingual math reasoning instruction dataset, MGSM8KInstruct, encompassing ten distinct languages.
arXiv Detail & Related papers (2023-10-31T08:09:20Z) - Efficiently Aligned Cross-Lingual Transfer Learning for Conversational
Tasks using Prompt-Tuning [98.60739735409243]
Cross-lingual transfer of language models trained on high-resource languages like English has been widely studied for many NLP tasks.
We introduce XSGD for cross-lingual alignment pretraining, a parallel and large-scale multilingual conversation dataset.
To facilitate aligned cross-lingual representations, we develop an efficient prompt-tuning-based method for learning alignment prompts.
arXiv Detail & Related papers (2023-04-03T18:46:01Z) - Beyond English-Centric Bitexts for Better Multilingual Language
Representation Learning [99.42850643947439]
We show that going beyond English-centric bitexts, coupled with a novel sampling strategy, substantially boosts performance across model sizes.
Our XY-LENT XL variant outperforms XLM-RXXL and exhibits competitive performance with mT5 XXL while being 5x and 6x smaller respectively.
arXiv Detail & Related papers (2022-10-26T17:16:52Z) - Mixed-Lingual Pre-training for Cross-lingual Summarization [54.4823498438831]
Cross-lingual Summarization aims at producing a summary in the target language for an article in the source language.
We propose a solution based on mixed-lingual pre-training that leverages both cross-lingual tasks like translation and monolingual tasks like masked language models.
Our model achieves an improvement of 2.82 (English to Chinese) and 1.15 (Chinese to English) ROUGE-1 scores over state-of-the-art results.
arXiv Detail & Related papers (2020-10-18T00:21:53Z) - Keep CALM and Explore: Language Models for Action Generation in
Text-based Games [27.00685301984832]
We propose the Contextual Action Language Model (CALM) to generate a compact set of action candidates at each game state.
We combine CALM with a reinforcement learning agent which re-ranks the generated action candidates to maximize in-game rewards.
arXiv Detail & Related papers (2020-10-06T17:36:29Z) - Kungfupanda at SemEval-2020 Task 12: BERT-Based Multi-Task Learning for
Offensive Language Detection [55.445023584632175]
We build an offensive language detection system, which combines multi-task learning with BERT-based models.
Our model achieves 91.51% F1 score in English Sub-task A, which is comparable to the first place.
arXiv Detail & Related papers (2020-04-28T11:27:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.