Bridging Audio and Vision: Zero-Shot Audiovisual Segmentation by Connecting Pretrained Models
- URL: http://arxiv.org/abs/2506.06537v1
- Date: Fri, 06 Jun 2025 21:06:35 GMT
- Title: Bridging Audio and Vision: Zero-Shot Audiovisual Segmentation by Connecting Pretrained Models
- Authors: Seung-jae Lee, Paul Hongsuck Seo,
- Abstract summary: We propose a novel zero-shot AVS framework that eliminates task-specific training by leveraging multiple pretrained models.<n>Our approach integrates audio, vision, and text representations to bridge modality gaps, enabling precise sound source segmentation without AVS-specific annotations.
- Score: 13.63552417613795
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Audiovisual segmentation (AVS) aims to identify visual regions corresponding to sound sources, playing a vital role in video understanding, surveillance, and human-computer interaction. Traditional AVS methods depend on large-scale pixel-level annotations, which are costly and time-consuming to obtain. To address this, we propose a novel zero-shot AVS framework that eliminates task-specific training by leveraging multiple pretrained models. Our approach integrates audio, vision, and text representations to bridge modality gaps, enabling precise sound source segmentation without AVS-specific annotations. We systematically explore different strategies for connecting pretrained models and evaluate their efficacy across multiple datasets. Experimental results demonstrate that our framework achieves state-of-the-art zero-shot AVS performance, highlighting the effectiveness of multimodal model integration for finegrained audiovisual segmentation.
Related papers
- Unsupervised Modality-Transferable Video Highlight Detection with Representation Activation Sequence Learning [7.908887001497406]
We propose a novel model with cross-modal perception for unsupervised highlight detection.<n>The proposed model learns representations with visual-audio level semantics from image-audio pair data via a self-reconstruction task.<n>The experimental results show that the proposed framework achieves superior performance compared to other state-of-the-art approaches.
arXiv Detail & Related papers (2024-03-14T13:52:03Z) - Bootstrapping Audio-Visual Segmentation by Strengthening Audio Cues [75.73217916395386]
We propose a Bidirectional Audio-Visual Decoder (BAVD) with integrated bidirectional bridges.
This interaction narrows the modality imbalance, facilitating more effective learning of integrated audio-visual representations.
We also present a strategy for audio-visual frame-wise synchrony as fine-grained guidance of BAVD.
arXiv Detail & Related papers (2024-02-04T03:02:35Z) - Improving Audio-Visual Segmentation with Bidirectional Generation [40.78395709407226]
We introduce a bidirectional generation framework for audio-visual segmentation.
This framework establishes robust correlations between an object's visual characteristics and its associated sound.
We also introduce an implicit volumetric motion estimation module to handle temporal dynamics.
arXiv Detail & Related papers (2023-08-16T11:20:23Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Unraveling Instance Associations: A Closer Look for Audio-Visual Segmentation [18.001730255429347]
Audio-visual segmentation (AVS) is a challenging task that involves accurately segmenting sounding objects based on audio-visual cues.
We propose a new cost-effective strategy to build challenging and relatively unbiased high-quality audio-visual segmentation benchmarks.
Experiments conducted on existing AVS datasets and on our new benchmark show that our method achieves state-of-the-art (SOTA) segmentation accuracy.
arXiv Detail & Related papers (2023-04-06T09:54:06Z) - AVFormer: Injecting Vision into Frozen Speech Models for Zero-Shot
AV-ASR [79.21857972093332]
We present AVFormer, a method for augmenting audio-only models with visual information, at the same time performing lightweight domain adaptation.
We show that these can be trained on a small amount of weakly labelled video data with minimum additional training time and parameters.
We also introduce a simple curriculum scheme during training which we show is crucial to enable the model to jointly process audio and visual information effectively.
arXiv Detail & Related papers (2023-03-29T07:24:28Z) - Audio-Visual Scene Classification Using A Transfer Learning Based Joint
Optimization Strategy [26.975596225131824]
We propose a joint training framework, using the acoustic features and raw images directly as inputs for the AVSC task.
Specifically, we retrieve the bottom layers of pre-trained image models as visual encoder, and jointly optimize the scene classifier and 1D-CNN based acoustic encoder during training.
arXiv Detail & Related papers (2022-04-25T03:37:02Z) - A study on joint modeling and data augmentation of multi-modalities for
audio-visual scene classification [64.59834310846516]
We propose two techniques, namely joint modeling and data augmentation, to improve system performances for audio-visual scene classification (AVSC)
Our final system can achieve the best accuracy of 94.2% among all single AVSC systems submitted to DCASE 2021 Task 1b.
arXiv Detail & Related papers (2022-03-07T07:29:55Z) - Curriculum Audiovisual Learning [113.20920928789867]
We present a flexible audiovisual model that introduces a soft-clustering module as the audio and visual content detector.
To ease the difficulty of audiovisual learning, we propose a novel learning strategy that trains the model from simple to complex scene.
We show that our localization model significantly outperforms existing methods, based on which we show comparable performance in sound separation without referring external visual supervision.
arXiv Detail & Related papers (2020-01-26T07:08:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.