Precise Information Control in Long-Form Text Generation
- URL: http://arxiv.org/abs/2506.06589v1
- Date: Fri, 06 Jun 2025 23:42:42 GMT
- Title: Precise Information Control in Long-Form Text Generation
- Authors: Jacqueline He, Howard Yen, Margaret Li, Shuyue Stella Li, Zhiyuan Zeng, Weijia Shi, Yulia Tsvetkov, Danqi Chen, Pang Wei Koh, Luke Zettlemoyer,
- Abstract summary: A central challenge in modern language models (LMs) is intrinsic hallucination.<n>We propose Precise Information Control (PIC), a new task formulation that requires models to generate long-form outputs grounded in a provided set of short self-contained statements.<n>We present PIC-Bench, a benchmark of eight long-form generation tasks adapted to the PIC setting, where LMs are supplied with well-formed, verifiable input claims.<n>Our evaluation of a range of open and proprietary LMs on PIC-Bench reveals that, surprisingly, state-of-the-art LMs still intrinsically hallucinate in over 70%
- Score: 92.88653652694838
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: A central challenge in modern language models (LMs) is intrinsic hallucination: the generation of information that is plausible but unsubstantiated relative to input context. To study this problem, we propose Precise Information Control (PIC), a new task formulation that requires models to generate long-form outputs grounded in a provided set of short self-contained statements, known as verifiable claims, without adding any unsupported ones. For comprehensiveness, PIC includes a full setting that tests a model's ability to include exactly all input claims, and a partial setting that requires the model to selectively incorporate only relevant claims. We present PIC-Bench, a benchmark of eight long-form generation tasks (e.g., summarization, biography generation) adapted to the PIC setting, where LMs are supplied with well-formed, verifiable input claims. Our evaluation of a range of open and proprietary LMs on PIC-Bench reveals that, surprisingly, state-of-the-art LMs still intrinsically hallucinate in over 70% of outputs. To alleviate this lack of faithfulness, we introduce a post-training framework, using a weakly supervised preference data construction method, to train an 8B PIC-LM with stronger PIC ability--improving from 69.1% to 91.0% F1 in the full PIC setting. When integrated into end-to-end factual generation pipelines, PIC-LM improves exact match recall by 17.1% on ambiguous QA with retrieval, and factual precision by 30.5% on a birthplace verification task, underscoring the potential of precisely grounded generation.
Related papers
- Language Bottleneck Models: A Framework for Interpretable Knowledge Tracing and Beyond [55.984684518346924]
We recast Knowledge Tracing as an inverse problem: learning the minimum natural-language summary that makes past answers explainable and future answers predictable.<n>Our Language Bottleneck Model (LBM) consists of an encoder LLM that writes an interpretable knowledge summary and a frozen decoder LLM that must reconstruct and predict student responses using only that summary text.<n> Experiments on synthetic arithmetic benchmarks and the large-scale Eedi dataset show that LBMs rival the accuracy of state-of-the-art KT and direct LLM methods while requiring orders-of-magnitude fewer student trajectories.
arXiv Detail & Related papers (2025-06-20T13:21:14Z) - Preemptive Hallucination Reduction: An Input-Level Approach for Multimodal Language Model [1.124958340749622]
This study presents a novel ensemble-based preprocessing framework that adaptively selects the most appropriate filtering approach.<n>The method achieves a 44.3% reduction in hallucination rates, as measured by Natural Language Inference (NLI) scores.<n>The findings highlight the importance of adaptive preprocessing techniques in mitigating hallucinations, paving the way for more reliable multimodal systems.
arXiv Detail & Related papers (2025-05-29T21:09:34Z) - Efficient and Versatile Robust Fine-Tuning of Zero-shot Models [34.27380518351181]
We introduce Robust Adapter (R-Adapter), a novel method for fine-tuning zero-shot models to downstream tasks.
Our method integrates lightweight modules into the pre-trained model and employs novel self-ensemble techniques to boost OOD robustness and reduce storage expenses substantially.
Our experiments demonstrate that R-Adapter achieves state-of-the-art performance across a diverse set of tasks, tuning only 13% of the parameters of the CLIP encoders.
arXiv Detail & Related papers (2024-08-11T11:37:43Z) - CaLM: Contrasting Large and Small Language Models to Verify Grounded Generation [76.31621715032558]
Grounded generation aims to equip language models (LMs) with the ability to produce more credible and accountable responses.
We introduce CaLM, a novel verification framework.
Our framework empowers smaller LMs, which rely less on parametric memory, to validate the output of larger LMs.
arXiv Detail & Related papers (2024-06-08T06:04:55Z) - Language Models with Conformal Factuality Guarantees [44.767328168194815]
Conformal factuality is a framework that can ensure high probability correctness guarantees for language model (LM) outputs.
We show that conformal prediction in language models corresponds to a back-off algorithm that provides high probability correctness guarantees.
arXiv Detail & Related papers (2024-02-15T18:31:53Z) - Deductive Closure Training of Language Models for Coherence, Accuracy, and Updatability [58.582216812183496]
Language models (LMs) can sometimes generate factually correct text and estimate truth values of individual claims.
Current LMs generate incorrect or nonsensical content, and are difficult to edit and bring up to date.
We present a method called Deductive Closure Training (DCT) that uses LMs themselves to identify implications of (and contradictions within) the text that they generate.
arXiv Detail & Related papers (2024-01-16T18:58:37Z) - Small Language Model Can Self-correct [42.76612128849389]
We introduce the underlineIntrinsic underlineSelf-underlineCorrection (ISC) in generative language models, aiming to correct the initial output of LMs in a self-triggered manner.
We conduct experiments using LMs with parameters sizes ranging from 6 billion to 13 billion in two tasks, including commonsense reasoning and factual knowledge reasoning.
arXiv Detail & Related papers (2024-01-14T14:29:07Z) - Look Before You Leap: A Universal Emergent Decomposition of Retrieval
Tasks in Language Models [58.57279229066477]
We study how language models (LMs) solve retrieval tasks in diverse situations.
We introduce ORION, a collection of structured retrieval tasks spanning six domains.
We find that LMs internally decompose retrieval tasks in a modular way.
arXiv Detail & Related papers (2023-12-13T18:36:43Z) - Test-Time Adaptation Induces Stronger Accuracy and Agreement-on-the-Line [65.14099135546594]
Recent test-time adaptation (TTA) methods drastically strengthen the ACL and AGL trends in models, even in shifts where models showed very weak correlations before.
Our results show that by combining TTA with AGL-based estimation methods, we can estimate the OOD performance of models with high precision for a broader set of distribution shifts.
arXiv Detail & Related papers (2023-10-07T23:21:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.