Stepwise Decomposition and Dual-stream Focus: A Novel Approach for Training-free Camouflaged Object Segmentation
- URL: http://arxiv.org/abs/2506.06818v2
- Date: Mon, 07 Jul 2025 01:59:53 GMT
- Title: Stepwise Decomposition and Dual-stream Focus: A Novel Approach for Training-free Camouflaged Object Segmentation
- Authors: Chao Yin, Hao Li, Kequan Yang, Jide Li, Pinpin Zhu, Xiaoqiang Li,
- Abstract summary: We propose a novel training-free test-time adaptation framework that synergizes textbfRegion-constrained textbfDual-stream textbfVisual textbfPrompting (RDVP) via textbfMultimodal textbfStepwise textbfDecomposition Chain of Thought (MSD-CoT)<n>RDVP injects spatial constraints into visual and independently samples visual prompts for foreground and background points, effectively mitigating semantic discrepancy and
- Score: 9.862714096455175
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While promptable segmentation (\textit{e.g.}, SAM) has shown promise for various segmentation tasks, it still requires manual visual prompts for each object to be segmented. In contrast, task-generic promptable segmentation aims to reduce the need for such detailed prompts by employing only a task-generic prompt to guide segmentation across all test samples. However, when applied to Camouflaged Object Segmentation (COS), current methods still face two critical issues: 1) \textit{\textbf{semantic ambiguity in getting instance-specific text prompts}}, which arises from insufficient discriminative cues in holistic captions, leading to foreground-background confusion; 2) \textit{\textbf{semantic discrepancy combined with spatial separation in getting instance-specific visual prompts}}, which results from global background sampling far from object boundaries with low feature correlation, causing SAM to segment irrelevant regions. To address the issues above, we propose \textbf{RDVP-MSD}, a novel training-free test-time adaptation framework that synergizes \textbf{R}egion-constrained \textbf{D}ual-stream \textbf{V}isual \textbf{P}rompting (RDVP) via \textbf{M}ultimodal \textbf{S}tepwise \textbf{D}ecomposition Chain of Thought (MSD-CoT). MSD-CoT progressively disentangles image captions to eliminate semantic ambiguity, while RDVP injects spatial constraints into visual prompting and independently samples visual prompts for foreground and background points, effectively mitigating semantic discrepancy and spatial separation. Without requiring any training or supervision, RDVP-MSD achieves a state-of-the-art segmentation result on multiple COS benchmarks and delivers a faster inference speed than previous methods, demonstrating significantly improved accuracy and efficiency. The codes will be available at \href{https://github.com/ycyinchao/RDVP-MSD}{https://github.com/ycyinchao/RDVP-MSD}
Related papers
- LIRA: Inferring Segmentation in Large Multi-modal Models with Local Interleaved Region Assistance [56.474856189865946]
Large multi-modal models (LMMs) struggle with inaccurate segmentation and hallucinated comprehension.<n>We propose LIRA, a framework that capitalizes on the complementary relationship between visual comprehension and segmentation.<n>LIRA achieves state-of-the-art performance in both segmentation and comprehension tasks.
arXiv Detail & Related papers (2025-07-08T07:46:26Z) - Semantic Localization Guiding Segment Anything Model For Reference Remote Sensing Image Segmentation [12.67400143793047]
We propose a framework named textitprompt-generated semantic localization guiding Segment Anything Model(PSLG-SAM)<n>PSLG-SAM decomposes the Reference Remote Sensing Image (RRSIS) task into two stages: coarse localization and fine segmentation.<n> Notably, the second stage can be train-free, significantly reducing the annotation data burden for the RRSIS task.
arXiv Detail & Related papers (2025-06-12T09:04:07Z) - LESS: Label-Efficient and Single-Stage Referring 3D Segmentation [55.06002976797879]
Referring 3D is a visual-language task that segments all points of the specified object from a 3D point cloud described by a sentence of query.
We propose a novel Referring 3D pipeline, Label-Efficient and Single-Stage, dubbed LESS, which is only under the supervision of efficient binary mask.
We achieve state-of-the-art performance on ScanRefer dataset by surpassing the previous methods about 3.7% mIoU using only binary labels.
arXiv Detail & Related papers (2024-10-17T07:47:41Z) - InvSeg: Test-Time Prompt Inversion for Semantic Segmentation [33.60580908728705]
InvSeg is a test-time prompt inversion method that tackles open-vocabulary semantic segmentation.<n>We introduce Contrastive Soft Clustering (CSC) to align derived masks with the image's structure information.<n>InvSeg learns context-rich text prompts in embedding space and achieves accurate semantic alignment across modalities.
arXiv Detail & Related papers (2024-10-15T10:20:31Z) - DQFormer: Towards Unified LiDAR Panoptic Segmentation with Decoupled Queries [14.435906383301555]
We propose a novel framework dubbed DQFormer to implement semantic and instance segmentation in a unified workflow.
Specifically, we design a decoupled query generator to propose informative queries with semantics by localizing things/stuff positions.
We also introduce a query-oriented mask decoder to decode corresponding segmentation masks.
arXiv Detail & Related papers (2024-08-28T14:14:33Z) - Spatial Semantic Recurrent Mining for Referring Image Segmentation [63.34997546393106]
We propose Stextsuperscript2RM to achieve high-quality cross-modality fusion.
It follows a working strategy of trilogy: distributing language feature, spatial semantic recurrent coparsing, and parsed-semantic balancing.
Our proposed method performs favorably against other state-of-the-art algorithms.
arXiv Detail & Related papers (2024-05-15T00:17:48Z) - Relax Image-Specific Prompt Requirement in SAM: A Single Generic Prompt
for Segmenting Camouflaged Objects [32.14438610147615]
We introduce a test-time adaptation per-instance mechanism called Generalizable SAM (GenSAM) to automatically enerate and optimize visual prompts.
Experiments on three benchmarks demonstrate that GenSAM outperforms point supervision approaches.
arXiv Detail & Related papers (2023-12-12T15:43:36Z) - Text Augmented Spatial-aware Zero-shot Referring Image Segmentation [60.84423786769453]
We introduce a Text Augmented Spatial-aware (TAS) zero-shot referring image segmentation framework.
TAS incorporates a mask proposal network for instance-level mask extraction, a text-augmented visual-text matching score for mining the image-text correlation, and a spatial for mask post-processing.
The proposed method clearly outperforms state-of-the-art zero-shot referring image segmentation methods.
arXiv Detail & Related papers (2023-10-27T10:52:50Z) - Explicit Visual Prompting for Low-Level Structure Segmentations [55.51869354956533]
We propose a new visual prompting model, named Explicit Visual Prompting (EVP)
EVP significantly outperforms other parameter-efficient tuning protocols under the same amount of tunable parameters.
EVP also achieves state-of-the-art performances on diverse low-level structure segmentation tasks.
arXiv Detail & Related papers (2023-03-20T06:01:53Z) - A Simple Framework for Open-Vocabulary Segmentation and Detection [85.21641508535679]
We present OpenSeeD, a simple Open-vocabulary and Detection framework that jointly learns from different segmentation and detection datasets.
We first introduce a pre-trained text encoder to encode all the visual concepts in two tasks and learn a common semantic space for them.
After pre-training, our model exhibits competitive or stronger zero-shot transferability for both segmentation and detection.
arXiv Detail & Related papers (2023-03-14T17:58:34Z) - Progressively Dual Prior Guided Few-shot Semantic Segmentation [57.37506990980975]
Few-shot semantic segmentation task aims at performing segmentation in query images with a few annotated support samples.
We propose a progressively dual prior guided few-shot semantic segmentation network.
arXiv Detail & Related papers (2022-11-20T16:19:47Z) - SegTAD: Precise Temporal Action Detection via Semantic Segmentation [65.01826091117746]
We formulate the task of temporal action detection in a novel perspective of semantic segmentation.
Owing to the 1-dimensional property of TAD, we are able to convert the coarse-grained detection annotations to fine-grained semantic segmentation annotations for free.
We propose an end-to-end framework SegTAD composed of a 1D semantic segmentation network (1D-SSN) and a proposal detection network (PDN)
arXiv Detail & Related papers (2022-03-03T06:52:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.