Hi-LSplat: Hierarchical 3D Language Gaussian Splatting
- URL: http://arxiv.org/abs/2506.06822v1
- Date: Sat, 07 Jun 2025 14:56:19 GMT
- Title: Hi-LSplat: Hierarchical 3D Language Gaussian Splatting
- Authors: Chenlu Zhan, Yufei Zhang, Gaoang Wang, Hongwei Wang,
- Abstract summary: Hi-LSplat is a view-consistent Hierarchical Language Gaussian Splatting work for 3D open-vocabulary querying.<n>We construct two hierarchical semantic datasets to better assess the model's ability to distinguish different semantic levels.
- Score: 11.810729064982372
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modeling 3D language fields with Gaussian Splatting for open-ended language queries has recently garnered increasing attention. However, recent 3DGS-based models leverage view-dependent 2D foundation models to refine 3D semantics but lack a unified 3D representation, leading to view inconsistencies. Additionally, inherent open-vocabulary challenges cause inconsistencies in object and relational descriptions, impeding hierarchical semantic understanding. In this paper, we propose Hi-LSplat, a view-consistent Hierarchical Language Gaussian Splatting work for 3D open-vocabulary querying. To achieve view-consistent 3D hierarchical semantics, we first lift 2D features to 3D features by constructing a 3D hierarchical semantic tree with layered instance clustering, which addresses the view inconsistency issue caused by 2D semantic features. Besides, we introduce instance-wise and part-wise contrastive losses to capture all-sided hierarchical semantic representations. Notably, we construct two hierarchical semantic datasets to better assess the model's ability to distinguish different semantic levels. Extensive experiments highlight our method's superiority in 3D open-vocabulary segmentation and localization. Its strong performance on hierarchical semantic datasets underscores its ability to capture complex hierarchical semantics within 3D scenes.
Related papers
- Tackling View-Dependent Semantics in 3D Language Gaussian Splatting [80.88015191411714]
LaGa establishes cross-view semantic connections by decomposing the 3D scene into objects.<n>It constructs view-aggregated semantic representations by clustering semantic descriptors and reweighting them based on multi-view semantics.<n>Under the same settings, LaGa achieves a significant improvement of +18.7% mIoU over the previous SOTA on the LERF-OVS dataset.
arXiv Detail & Related papers (2025-05-30T16:06:32Z) - Training-Free Hierarchical Scene Understanding for Gaussian Splatting with Superpoint Graphs [16.153129392697885]
We introduce a training-free framework that constructs a superpoint graph directly from Gaussian primitives.<n>The superpoint graph partitions the scene into spatially compact and semantically coherent regions, forming view-consistent 3D entities.<n>Our method achieves state-of-the-art open-vocabulary segmentation performance, with semantic field reconstruction completed over $30times$ faster.
arXiv Detail & Related papers (2025-04-17T17:56:07Z) - Interpretable Single-View 3D Gaussian Splatting using Unsupervised Hierarchical Disentangled Representation Learning [46.85417907244265]
We propose an interpretable single-view 3DGS framework, termed 3DisGS, to discover both coarse- and fine-grained 3D semantics.<n>Our model achieves 3D disentanglement while preserving high-quality and rapid reconstruction.
arXiv Detail & Related papers (2025-04-05T14:42:13Z) - ReasonGrounder: LVLM-Guided Hierarchical Feature Splatting for Open-Vocabulary 3D Visual Grounding and Reasoning [68.4209681278336]
Open-vocabulary 3D visual grounding and reasoning aim to localize objects in a scene based on implicit language descriptions.<n>Current methods struggle because they rely heavily on fine-tuning with 3D annotations and mask proposals.<n>We propose ReasonGrounder, an LVLM-guided framework that uses hierarchical 3D feature Gaussian fields for adaptive grouping.
arXiv Detail & Related papers (2025-03-30T03:40:35Z) - Bootstraping Clustering of Gaussians for View-consistent 3D Scene Understanding [59.51535163599723]
FreeGS is an unsupervised semantic-embedded 3DGS framework that achieves view-consistent 3D scene understanding without the need for 2D labels.<n>FreeGS performs comparably to state-of-the-art methods while avoiding the complex data preprocessing workload.
arXiv Detail & Related papers (2024-11-29T08:52:32Z) - ConceptGraphs: Open-Vocabulary 3D Scene Graphs for Perception and
Planning [125.90002884194838]
ConceptGraphs is an open-vocabulary graph-structured representation for 3D scenes.
It is built by leveraging 2D foundation models and fusing their output to 3D by multi-view association.
We demonstrate the utility of this representation through a number of downstream planning tasks.
arXiv Detail & Related papers (2023-09-28T17:53:38Z) - Lowis3D: Language-Driven Open-World Instance-Level 3D Scene
Understanding [57.47315482494805]
Open-world instance-level scene understanding aims to locate and recognize unseen object categories that are not present in the annotated dataset.
This task is challenging because the model needs to both localize novel 3D objects and infer their semantic categories.
We propose to harness pre-trained vision-language (VL) foundation models that encode extensive knowledge from image-text pairs to generate captions for 3D scenes.
arXiv Detail & Related papers (2023-08-01T07:50:14Z) - Distilling Coarse-to-Fine Semantic Matching Knowledge for Weakly
Supervised 3D Visual Grounding [58.924180772480504]
3D visual grounding involves finding a target object in a 3D scene that corresponds to a given sentence query.
We propose to leverage weakly supervised annotations to learn the 3D visual grounding model.
We design a novel semantic matching model that analyzes the semantic similarity between object proposals and sentences in a coarse-to-fine manner.
arXiv Detail & Related papers (2023-07-18T13:49:49Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.