Log-Sum-Exponential Estimator for Off-Policy Evaluation and Learning
- URL: http://arxiv.org/abs/2506.06873v1
- Date: Sat, 07 Jun 2025 17:37:10 GMT
- Title: Log-Sum-Exponential Estimator for Off-Policy Evaluation and Learning
- Authors: Armin Behnamnia, Gholamali Aminian, Alireza Aghaei, Chengchun Shi, Vincent Y. F. Tan, Hamid R. Rabiee,
- Abstract summary: We introduce a novel estimator based on the log-sum-exponential (LSE) operator, which outperforms traditional inverse propensity score estimators.<n>Our LSE estimator demonstrates variance reduction and robustness under heavy-tailed conditions.<n>In the off-policy learning scenario, we establish bounds on the regret -- the performance gap between our LSE estimator and the optimal policy.
- Score: 50.93804891554481
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Off-policy learning and evaluation leverage logged bandit feedback datasets, which contain context, action, propensity score, and feedback for each data point. These scenarios face significant challenges due to high variance and poor performance with low-quality propensity scores and heavy-tailed reward distributions. We address these issues by introducing a novel estimator based on the log-sum-exponential (LSE) operator, which outperforms traditional inverse propensity score estimators. Our LSE estimator demonstrates variance reduction and robustness under heavy-tailed conditions. For off-policy evaluation, we derive upper bounds on the estimator's bias and variance. In the off-policy learning scenario, we establish bounds on the regret -- the performance gap between our LSE estimator and the optimal policy -- assuming bounded $(1+\epsilon)$-th moment of weighted reward. Notably, we achieve a convergence rate of $O(n^{-\epsilon/(1+ \epsilon)})$ for the regret bounds, where $\epsilon \in [0,1]$ and $n$ is the size of logged bandit feedback dataset. Theoretical analysis is complemented by comprehensive empirical evaluations in both off-policy learning and evaluation scenarios, confirming the practical advantages of our approach. The code for our estimator is available at the following link: https://github.com/armin-behnamnia/lse-offpolicy-learning.
Related papers
- Distributionally Robust Policy Learning under Concept Drifts [33.44768994272614]
This paper studies a more nuanced problem -- robust policy learning under the concept drift.<n>We first provide a doubly-robust estimator for evaluating the worst-case average reward of a given policy.<n>We then propose a learning algorithm that outputs the policy maximizing the estimated policy value within a given policy class.
arXiv Detail & Related papers (2024-12-18T19:53:56Z) - Contextual Linear Optimization with Bandit Feedback [35.692428244561626]
Contextual linear optimization (CLO) uses predictive contextual features to reduce uncertainty in random cost coefficients.
We study a class of offline learning algorithms for CLO with bandit feedback.
We show a fast-rate regret bound for IERM that allows for misspecified model classes and flexible choices of the optimization estimate.
arXiv Detail & Related papers (2024-05-26T13:27:27Z) - Importance-Weighted Offline Learning Done Right [16.4989952150404]
We study the problem of offline policy optimization in contextual bandit problems.
The goal is to learn a near-optimal policy based on a dataset of decision data collected by a suboptimal behavior policy.
We show that a simple alternative approach based on the "implicit exploration" estimator of citet2015 yields performance guarantees that are superior in nearly all possible terms to all previous results.
arXiv Detail & Related papers (2023-09-27T16:42:10Z) - Distributional Reinforcement Learning with Dual Expectile-Quantile Regression [51.87411935256015]
quantile regression approach to distributional RL provides flexible and effective way of learning arbitrary return distributions.<n>We show that distributional estimation guarantees vanish, and we empirically observe that the estimated distribution rapidly collapses to its mean.<n>Motivated by the efficiency of $L$-based learning, we propose to jointly learn expectiles and quantiles of the return distribution in a way that allows efficient learning.
arXiv Detail & Related papers (2023-05-26T12:30:05Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - Quantile Off-Policy Evaluation via Deep Conditional Generative Learning [21.448553360543478]
Off-Policy evaluation (OPE) is concerned with evaluating a new target policy using offline data generated by a potentially different behavior policy.
We propose a doubly-robust inference procedure for quantile OPE in sequential decision making.
We demonstrate the advantages of this proposed estimator through both simulations and a real-world dataset from a short-video platform.
arXiv Detail & Related papers (2022-12-29T22:01:43Z) - Unifying Gradient Estimators for Meta-Reinforcement Learning via
Off-Policy Evaluation [53.83642844626703]
We provide a unifying framework for estimating higher-order derivatives of value functions, based on off-policy evaluation.
Our framework interprets a number of prior approaches as special cases and elucidates the bias and variance trade-off of Hessian estimates.
arXiv Detail & Related papers (2021-06-24T15:58:01Z) - Sparse Feature Selection Makes Batch Reinforcement Learning More Sample
Efficient [62.24615324523435]
This paper provides a statistical analysis of high-dimensional batch Reinforcement Learning (RL) using sparse linear function approximation.
When there is a large number of candidate features, our result sheds light on the fact that sparsity-aware methods can make batch RL more sample efficient.
arXiv Detail & Related papers (2020-11-08T16:48:02Z) - Optimal Algorithms for Stochastic Multi-Armed Bandits with Heavy Tailed
Rewards [24.983866845065926]
We consider multi-armed bandits with heavy-tailed rewards, whose $p$-th moment is bounded by a constant $nu_p$ for $1pleq2$.
We propose a novel robust estimator which does not require $nu_p$ as prior information.
We show that an error probability of the proposed estimator decays exponentially fast.
arXiv Detail & Related papers (2020-10-24T10:44:02Z) - Minimax-Optimal Off-Policy Evaluation with Linear Function Approximation [49.502277468627035]
This paper studies the statistical theory of batch data reinforcement learning with function approximation.
Consider the off-policy evaluation problem, which is to estimate the cumulative value of a new target policy from logged history.
arXiv Detail & Related papers (2020-02-21T19:20:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.