Causal Graph based Event Reasoning using Semantic Relation Experts
- URL: http://arxiv.org/abs/2506.06910v1
- Date: Sat, 07 Jun 2025 20:15:45 GMT
- Title: Causal Graph based Event Reasoning using Semantic Relation Experts
- Authors: Mahnaz Koupaee, Xueying Bai, Mudan Chen, Greg Durrett, Nathanael Chambers, Niranjan Balasubramanian,
- Abstract summary: We investigate the generation of causal event graphs as a parallel mechanism to help Large Language Models (LLMs) explicitly represent causality during inference.<n>We propose a collaborative approach to causal graph generation where we use LLMs to simulate experts that focus on specific semantic relations.<n>We also introduce a new explainable event prediction task that requires a causal chain of events in the explanation.
- Score: 56.328115024900725
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Understanding how events in a scenario causally connect with each other is important for effectively modeling and reasoning about events. But event reasoning remains a difficult challenge, and despite recent advances, Large Language Models (LLMs) still struggle to accurately identify causal connections between events. This struggle leads to poor performance on deeper reasoning tasks like event forecasting and timeline understanding. To address this challenge, we investigate the generation of causal event graphs (e.g., A enables B) as a parallel mechanism to help LLMs explicitly represent causality during inference. This paper evaluates both how to generate correct graphs as well as how graphs can assist reasoning. We propose a collaborative approach to causal graph generation where we use LLMs to simulate experts that focus on specific semantic relations. The experts engage in multiple rounds of discussions which are then consolidated by a final expert. Then, to demonstrate the utility of causal graphs, we use them on multiple downstream applications, and also introduce a new explainable event prediction task that requires a causal chain of events in the explanation. These explanations are more informative and coherent than baseline generations. Finally, our overall approach not finetuned on any downstream task, achieves competitive results with state-of-the-art models on both forecasting and next event prediction tasks.
Related papers
- Do Larger Language Models Imply Better Generalization? A Pretraining Scaling Law for Implicit Reasoning [89.17086632436363]
We introduce a synthetic multihop reasoning environment designed to replicate the structure and distribution of real-world large-scale knowledge graphs.<n>Our reasoning task involves completing missing edges in the graph, which requires advanced multi-hop reasoning and mimics real-world reasoning scenarios.<n>To predict the optimal model size for a specific knowledge graph, we find an empirical scaling that linearly maps the knowledge graph search entropy to the optimal model size.
arXiv Detail & Related papers (2025-04-04T17:57:22Z) - Reasoning with Graphs: Structuring Implicit Knowledge to Enhance LLMs Reasoning [73.2950349728376]
Large language models (LLMs) have demonstrated remarkable success across a wide range of tasks.<n>However, they still encounter challenges in reasoning tasks that require understanding and inferring relationships between pieces of information.<n>This challenge is particularly pronounced in tasks involving multi-step processes, such as logical reasoning and multi-hop question answering.<n>We propose Reasoning with Graphs (RwG) by first constructing explicit graphs from the context.
arXiv Detail & Related papers (2025-01-14T05:18:20Z) - MECD+: Unlocking Event-Level Causal Graph Discovery for Video Reasoning [16.209265930309854]
We introduce a new task and dataset, Multi-Event Causal Discovery (MECD)<n>It aims to uncover the causal relations between events distributed chronologically across long videos.<n>We devise a novel framework inspired by the Granger Causality method, incorporating an efficient mask-based event prediction model.
arXiv Detail & Related papers (2025-01-13T11:28:49Z) - Enhancing Event Causality Identification with Rationale and Structure-Aware Causal Question Answering [30.000134835133522]
Event Causality Identification (DECI) aims to identify causal relations between two events in documents.
Recent research tends to use pre-trained language models to generate the event causal relations.
We propose a multi-task learning framework to enhance event causality identification with rationale and structure-aware causal question answering.
arXiv Detail & Related papers (2024-03-17T07:41:58Z) - Constructing and Interpreting Causal Knowledge Graphs from News [3.3071569417370745]
Many financial jobs rely on news to learn about causal events in the past and present, to make informed decisions and predictions about the future.
We propose a methodology to construct causal knowledge graphs (KGs) from news using two steps: (1) Extraction of Causal Relations, and (2) Argument Clustering and Representation into KG.
arXiv Detail & Related papers (2023-05-16T11:33:32Z) - Logic and Commonsense-Guided Temporal Knowledge Graph Completion [9.868206060374991]
A temporal knowledge graph (TKG) stores the events derived from the data involving time.
We propose a Logic and Commonsense-Guided Embedding model (LCGE) to jointly learn the time-sensitive representation involving timeliness and causality of events.
arXiv Detail & Related papers (2022-11-30T10:06:55Z) - CLEAR: Generative Counterfactual Explanations on Graphs [60.30009215290265]
We study the problem of counterfactual explanation generation on graphs.
A few studies have explored counterfactual explanations on graphs, but many challenges of this problem are still not well-addressed.
We propose a novel framework CLEAR which aims to generate counterfactual explanations on graphs for graph-level prediction models.
arXiv Detail & Related papers (2022-10-16T04:35:32Z) - A Graph Enhanced BERT Model for Event Prediction [35.02248467245135]
We consider automatically building of event graph using a BERT model.
We incorporate an additional structured variable into BERT to learn to predict the event connections in the training process.
Results on two event prediction tasks: script event prediction and story ending prediction, show that our approach can outperform state-of-the-art baseline methods.
arXiv Detail & Related papers (2022-05-22T13:37:38Z) - CEP3: Community Event Prediction with Neural Point Process on Graph [59.434777403325604]
We propose a novel model combining Graph Neural Networks and Marked Temporal Point Process (MTPP)
Our experiments demonstrate the superior performance of our model in terms of both model accuracy and training efficiency.
arXiv Detail & Related papers (2022-05-21T15:30:25Z) - ExplaGraphs: An Explanation Graph Generation Task for Structured
Commonsense Reasoning [65.15423587105472]
We present a new generative and structured commonsense-reasoning task (and an associated dataset) of explanation graph generation for stance prediction.
Specifically, given a belief and an argument, a model has to predict whether the argument supports or counters the belief and also generate a commonsense-augmented graph that serves as non-trivial, complete, and unambiguous explanation for the predicted stance.
A significant 83% of our graphs contain external commonsense nodes with diverse structures and reasoning depths.
arXiv Detail & Related papers (2021-04-15T17:51:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.