Deep regularization networks for inverse problems with noisy operators
- URL: http://arxiv.org/abs/2506.07008v1
- Date: Sun, 08 Jun 2025 06:19:18 GMT
- Title: Deep regularization networks for inverse problems with noisy operators
- Authors: Fatemeh Pourahmadian, Yang Xu,
- Abstract summary: A supervised learning approach is proposed for regularization of large inverse problems where the main operator is built from noisy data.<n>A neural operator maps each pattern on the right-hand side of the scattering equation to its affiliated regularization parameter.<n>We demonstrate that networks informed by the logic of discrepancy principle lead to images of higher contrast.
- Score: 2.665036498336221
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: A supervised learning approach is proposed for regularization of large inverse problems where the main operator is built from noisy data. This is germane to superresolution imaging via the sampling indicators of the inverse scattering theory. We aim to accelerate the spatiotemporal regularization process for this class of inverse problems to enable real-time imaging. In this approach, a neural operator maps each pattern on the right-hand side of the scattering equation to its affiliated regularization parameter. The network is trained in two steps which entails: (1) training on low-resolution regularization maps furnished by the Morozov discrepancy principle with nonoptimal thresholds, and (2) optimizing network predictions through minimization of the Tikhonov loss function regulated by the validation loss. Step 2 allows for tailoring of the approximate maps of Step 1 toward construction of higher quality images. This approach enables direct learning from test data and dispenses with the need for a-priori knowledge of the optimal regularization maps. The network, trained on low-resolution data, quickly generates dense regularization maps for high-resolution imaging. We highlight the importance of the training loss function on the network's generalizability. In particular, we demonstrate that networks informed by the logic of discrepancy principle lead to images of higher contrast. In this case, the training process involves many-objective optimization. We propose a new method to adaptively select the appropriate loss weights during training without requiring an additional optimization process. The proposed approach is synthetically examined for imaging damage evolution in an elastic plate. The results indicate that the discrepancy-informed regularization networks not only accelerate the imaging process, but also remarkably enhance the image quality in complex environments.
Related papers
- Simplicity bias and optimization threshold in two-layer ReLU networks [24.43739371803548]
We show that despite overparametrization, networks converge toward simpler solutions rather than interpolating the training data.
Our analysis relies on the so called early alignment phase, during which neurons align towards specific directions.
arXiv Detail & Related papers (2024-10-03T09:58:57Z) - Iterative Soft Shrinkage Learning for Efficient Image Super-Resolution [91.3781512926942]
Image super-resolution (SR) has witnessed extensive neural network designs from CNN to transformer architectures.
This work investigates the potential of network pruning for super-resolution iteration to take advantage of off-the-shelf network designs and reduce the underlying computational overhead.
We propose a novel Iterative Soft Shrinkage-Percentage (ISS-P) method by optimizing the sparse structure of a randomly network at each and tweaking unimportant weights with a small amount proportional to the magnitude scale on-the-fly.
arXiv Detail & Related papers (2023-03-16T21:06:13Z) - Learning Sparsity-Promoting Regularizers using Bilevel Optimization [9.18465987536469]
We present a method for supervised learning of sparsity-promoting regularizers for denoising signals and images.
Experiments with structured 1D signals and natural images show that the proposed method can learn an operator that outperforms well-known regularizers.
arXiv Detail & Related papers (2022-07-18T20:50:02Z) - Convolutional Analysis Operator Learning by End-To-End Training of
Iterative Neural Networks [3.6280929178575994]
We show how convolutional sparsifying filters can be efficiently learned by end-to-end training of iterative neural networks.
We evaluated our approach on a non-Cartesian 2D cardiac cine MRI example and show that the obtained filters are better suitable for the corresponding reconstruction algorithm than the ones obtained by decoupled pre-training.
arXiv Detail & Related papers (2022-03-04T07:32:16Z) - Low-light Image Enhancement by Retinex Based Algorithm Unrolling and
Adjustment [50.13230641857892]
We propose a new deep learning framework for the low-light image enhancement (LIE) problem.
The proposed framework contains a decomposition network inspired by algorithm unrolling, and adjustment networks considering both global brightness and local brightness sensitivity.
Experiments on a series of typical LIE datasets demonstrated the effectiveness of the proposed method, both quantitatively and visually, as compared with existing methods.
arXiv Detail & Related papers (2022-02-12T03:59:38Z) - Unpaired Image Super-Resolution with Optimal Transport Maps [128.1189695209663]
Real-world image super-resolution (SR) tasks often do not have paired datasets limiting the application of supervised techniques.
We propose an algorithm for unpaired SR which learns an unbiased OT map for the perceptual transport cost.
Our algorithm provides nearly state-of-the-art performance on the large-scale unpaired AIM-19 dataset.
arXiv Detail & Related papers (2022-02-02T16:21:20Z) - Learning Discriminative Shrinkage Deep Networks for Image Deconvolution [122.79108159874426]
We propose an effective non-blind deconvolution approach by learning discriminative shrinkage functions to implicitly model these terms.
Experimental results show that the proposed method performs favorably against the state-of-the-art ones in terms of efficiency and accuracy.
arXiv Detail & Related papers (2021-11-27T12:12:57Z) - Joint inference and input optimization in equilibrium networks [68.63726855991052]
deep equilibrium model is a class of models that foregoes traditional network depth and instead computes the output of a network by finding the fixed point of a single nonlinear layer.
We show that there is a natural synergy between these two settings.
We demonstrate this strategy on various tasks such as training generative models while optimizing over latent codes, training models for inverse problems like denoising and inpainting, adversarial training and gradient based meta-learning.
arXiv Detail & Related papers (2021-11-25T19:59:33Z) - Uncalibrated Neural Inverse Rendering for Photometric Stereo of General
Surfaces [103.08512487830669]
This paper presents an uncalibrated deep neural network framework for the photometric stereo problem.
Existing neural network-based methods either require exact light directions or ground-truth surface normals of the object or both.
We propose an uncalibrated neural inverse rendering approach to this problem.
arXiv Detail & Related papers (2020-12-12T10:33:08Z) - Blind Image Restoration with Flow Based Priors [19.190289348734215]
In a blind setting with unknown degradations, a good prior remains crucial.
We propose using normalizing flows to model the distribution of the target content and to use this as a prior in a maximum a posteriori (MAP) formulation.
To the best of our knowledge, this is the first work that explores normalizing flows as prior in image enhancement problems.
arXiv Detail & Related papers (2020-09-09T21:40:11Z) - Deep Variational Network Toward Blind Image Restoration [60.45350399661175]
Blind image restoration is a common yet challenging problem in computer vision.
We propose a novel blind image restoration method, aiming to integrate both the advantages of them.
Experiments on two typical blind IR tasks, namely image denoising and super-resolution, demonstrate that the proposed method achieves superior performance over current state-of-the-arts.
arXiv Detail & Related papers (2020-08-25T03:30:53Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.