NanoZone: Scalable, Efficient, and Secure Memory Protection for Arm CCA
- URL: http://arxiv.org/abs/2506.07034v1
- Date: Sun, 08 Jun 2025 07:55:48 GMT
- Title: NanoZone: Scalable, Efficient, and Secure Memory Protection for Arm CCA
- Authors: Shiqi Liu, Yongpeng Gao, Mingyang Zhang, Jie Wang,
- Abstract summary: Arm Confidential Computing Architecture (CCA) currently isolates at the granularity of an entire Confidential Virtual Machine (CVM)<n>We extend CCA with a three-tier zone model that spawns an unlimited number of lightweight isolation domains inside a single process.<n>To block domain-switch abuse, we also add a fast user-level Code-Pointer Integrity (CPI) mechanism.
- Score: 4.597444093276292
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Arm Confidential Computing Architecture (CCA) currently isolates at the granularity of an entire Confidential Virtual Machine (CVM), leaving intra-VM bugs such as Heartbleed unmitigated. The state-of-the-art narrows this to the process level, yet still cannot stop attacks that pivot within the same process, and prior intra-enclave schemes are either too slow or incompatible with CVM-style isolation. We extend CCA with a three-tier zone model that spawns an unlimited number of lightweight isolation domains inside a single process, while shielding them from kernel-space adversaries. To block domain-switch abuse, we also add a fast user-level Code-Pointer Integrity (CPI) mechanism. We developed two prototypes: a functional version on Arm's official simulator to validate resistance against intra-process and kernel-space adversaries, and a performance variant on Arm development boards evaluated for session-key isolation within server applications, in-memory key-value protection, and non-volatile-memory data isolation. NanoZone incurs roughly a 20% performance overhead while retaining 95% throughput compared to the system without fine-grained isolation.
Related papers
- Inter2Former: Dynamic Hybrid Attention for Efficient High-Precision Interactive [58.0729162588429]
Interactive segmentation improves annotation efficiency by segmenting target regions from user prompts.<n>Current approaches face a critical trade-off: dense-token methods achieve superior accuracy but suffer from prohibitively slow processing on CPU devices.<n>We propose Inter2Former to address this challenge by optimizing computation allocation in dense-token processing.
arXiv Detail & Related papers (2025-07-13T12:33:37Z) - BULKHEAD: Secure, Scalable, and Efficient Kernel Compartmentalization with PKS [16.239598954752594]
Kernel compartmentalization is a promising approach that follows the least-privilege principle.
We present BULKHEAD, a secure, scalable, and efficient kernel compartmentalization technique.
We implement a prototype system on Linux v6.1 to compartmentalize loadable kernel modules.
arXiv Detail & Related papers (2024-09-15T04:11:26Z) - Devlore: Extending Arm CCA to Integrated Devices A Journey Beyond Memory to Interrupt Isolation [10.221747752230131]
Arm Confidential Computing Architecture executes sensitive computation in an abstraction called realm.
CCA does not allow integrated devices on the platform to access realm.
We present Devlore which allows realm to directly access integrated peripherals.
arXiv Detail & Related papers (2024-08-11T17:33:48Z) - TME-Box: Scalable In-Process Isolation through Intel TME-MK Memory Encryption [11.543384661361232]
Cloud computing relies on in-process isolation to optimize performance by running workloads within a single process.
Existing in-process isolation mechanisms are not suitable for modern cloud requirements.
This paper presents TME-Box, a novel isolation technique that enables fine-grained and scalable sandboxing on commodity x86 machines.
arXiv Detail & Related papers (2024-07-15T14:09:00Z) - HasTEE+ : Confidential Cloud Computing and Analytics with Haskell [50.994023665559496]
Confidential computing enables the protection of confidential code and data in a co-tenanted cloud deployment using specialized hardware isolation units called Trusted Execution Environments (TEEs)
TEEs offer low-level C/C++-based toolchains that are susceptible to inherent memory safety vulnerabilities and lack language constructs to monitor explicit and implicit information-flow leaks.
We address the above with HasTEE+, a domain-specific language (cla) embedded in Haskell that enables programming TEEs in a high-level language with strong type-safety.
arXiv Detail & Related papers (2024-01-17T00:56:23Z) - Capacity: Cryptographically-Enforced In-Process Capabilities for Modern ARM Architectures (Extended Version) [1.2687030176231846]
Capacity is a novel hardware-assisted intra-process access control design that embraces capability-based security principles.
With intra-process domains authenticated with unique PA keys, Capacity transforms file descriptors and memory pointers into cryptographically-authenticated references.
We evaluate our Capacity-enabled NGINX web server prototype and other common applications in which sensitive resources are isolated into different domains.
arXiv Detail & Related papers (2023-09-20T08:57:02Z) - Citadel: Simple Spectre-Safe Isolation For Real-World Programs That Share Memory [8.414722884952525]
We introduce a new security property we call relaxed microarchitectural isolation (RMI)<n>RMI allows sensitive programs that are not-constant-time to share memory with an attacker while restricting the information leakage to that of non-speculative execution.<n>Our end-to-end prototype, Citadel, consists of an FPGA-based multicore processor that boots Linux and runs secure applications.
arXiv Detail & Related papers (2023-06-26T17:51:23Z) - Is Vertical Logistic Regression Privacy-Preserving? A Comprehensive
Privacy Analysis and Beyond [57.10914865054868]
We consider vertical logistic regression (VLR) trained with mini-batch descent gradient.
We provide a comprehensive and rigorous privacy analysis of VLR in a class of open-source Federated Learning frameworks.
arXiv Detail & Related papers (2022-07-19T05:47:30Z) - Bilateral Dependency Optimization: Defending Against Model-inversion
Attacks [61.78426165008083]
We propose a bilateral dependency optimization (BiDO) strategy to defend against model-inversion attacks.
BiDO achieves the state-of-the-art defense performance for a variety of datasets, classifiers, and MI attacks.
arXiv Detail & Related papers (2022-06-11T10:07:03Z) - Dual Cluster Contrastive learning for Person Re-Identification [78.42770787790532]
We formulate a unified cluster contrastive framework, named Dual Cluster Contrastive learning (DCC)
DCC maintains two types of memory banks: individual and centroid cluster memory banks.
It can be easily applied for unsupervised or supervised person ReID.
arXiv Detail & Related papers (2021-12-09T02:43:25Z) - Feature Completion for Occluded Person Re-Identification [138.5671859358049]
RFC block can recover semantics of occluded regions in feature space.
SRFC exploits the long-range spatial contexts from non-occluded regions to predict the features of occluded regions.
TRFC module captures the long-term temporal contexts to refine the prediction of SRFC.
arXiv Detail & Related papers (2021-06-24T02:40:40Z) - FCOS: A simple and strong anchor-free object detector [111.87691210818194]
We propose a fully convolutional one-stage object detector (FCOS) to solve object detection in a per-pixel prediction fashion.
Almost all state-of-the-art object detectors such as RetinaNet, SSD, YOLOv3, and Faster R-CNN rely on pre-defined anchor boxes.
In contrast, our proposed detector FCOS is anchor box free, as well as proposal free.
arXiv Detail & Related papers (2020-06-14T01:03:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.