Quality-Diversity Red-Teaming: Automated Generation of High-Quality and Diverse Attackers for Large Language Models
- URL: http://arxiv.org/abs/2506.07121v1
- Date: Sun, 08 Jun 2025 13:07:41 GMT
- Title: Quality-Diversity Red-Teaming: Automated Generation of High-Quality and Diverse Attackers for Large Language Models
- Authors: Ren-Jian Wang, Ke Xue, Zeyu Qin, Ziniu Li, Sheng Tang, Hao-Tian Li, Shengcai Liu, Chao Qian,
- Abstract summary: This paper introduces Quality-Diversity Red-Teaming (QDRT), a new framework designed to address these limitations.<n>QDRT achieves goal-driven diversity through behavior-conditioned training and implements a behavioral replay buffer in an open-ended manner.<n>Our empirical evaluation demonstrates that QDRT generates attacks that are both more diverse and more effective against a wide range of target LLMs.
- Score: 34.601888589730194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Ensuring safety of large language models (LLMs) is important. Red teaming--a systematic approach to identifying adversarial prompts that elicit harmful responses from target LLMs--has emerged as a crucial safety evaluation method. Within this framework, the diversity of adversarial prompts is essential for comprehensive safety assessments. We find that previous approaches to red-teaming may suffer from two key limitations. First, they often pursue diversity through simplistic metrics like word frequency or sentence embedding similarity, which may not capture meaningful variation in attack strategies. Second, the common practice of training a single attacker model restricts coverage across potential attack styles and risk categories. This paper introduces Quality-Diversity Red-Teaming (QDRT), a new framework designed to address these limitations. QDRT achieves goal-driven diversity through behavior-conditioned training and implements a behavioral replay buffer in an open-ended manner. Additionally, it trains multiple specialized attackers capable of generating high-quality attacks across diverse styles and risk categories. Our empirical evaluation demonstrates that QDRT generates attacks that are both more diverse and more effective against a wide range of target LLMs, including GPT-2, Llama-3, Gemma-2, and Qwen2.5. This work advances the field of LLM safety by providing a systematic and effective approach to automated red-teaming, ultimately supporting the responsible deployment of LLMs.
Related papers
- Secure Tug-of-War (SecTOW): Iterative Defense-Attack Training with Reinforcement Learning for Multimodal Model Security [63.41350337821108]
We propose Secure Tug-of-War (SecTOW) to enhance the security of multimodal large language models (MLLMs)<n>SecTOW consists of two modules: a defender and an auxiliary attacker, both trained iteratively using reinforcement learning (GRPO)<n>We show that SecTOW significantly improves security while preserving general performance.
arXiv Detail & Related papers (2025-07-29T17:39:48Z) - MTSA: Multi-turn Safety Alignment for LLMs through Multi-round Red-teaming [38.25556351567948]
textbfMulti-textbfTurn textbfSafety textbfAlignment (ourapproach) framework for securing large language models.<n>Red-team model learns about thought-guided multi-round jailbreak attacks to generate adversarial prompts.<n> adversarial iterative optimization stage, the red-team model and the target model continuously improve their respective capabilities in interaction.
arXiv Detail & Related papers (2025-05-22T08:22:57Z) - Strategize Globally, Adapt Locally: A Multi-Turn Red Teaming Agent with Dual-Level Learning [39.931442440365444]
AlgName is a novel red-teaming agent that emulates sophisticated human attackers through complementary learning dimensions.<n>AlgName enables the agent to identify new jailbreak tactics, develop a goal-based tactic selection framework, and refine prompt formulations for selected tactics.<n> Empirical evaluations on JailbreakBench demonstrate our framework's superior performance, achieving over 90% attack success rates against GPT-3.5-Turbo and Llama-3.1-70B within 5 conversation turns.
arXiv Detail & Related papers (2025-04-02T01:06:19Z) - Diverse and Effective Red Teaming with Auto-generated Rewards and Multi-step Reinforcement Learning [7.670515615413488]
We provide methods that enable automated red teaming to generate a large number of diverse and successful attacks.<n>Our approach decomposes the task into two steps: (1) automated methods for generating diverse attack goals and (2) generating effective attacks for those goals.
arXiv Detail & Related papers (2024-12-24T22:38:46Z) - Purple-teaming LLMs with Adversarial Defender Training [57.535241000787416]
We present Purple-teaming LLMs with Adversarial Defender training (PAD)
PAD is a pipeline designed to safeguard LLMs by novelly incorporating the red-teaming (attack) and blue-teaming (safety training) techniques.
PAD significantly outperforms existing baselines in both finding effective attacks and establishing a robust safe guardrail.
arXiv Detail & Related papers (2024-07-01T23:25:30Z) - DiveR-CT: Diversity-enhanced Red Teaming Large Language Model Assistants with Relaxing Constraints [68.82294911302579]
We introduce DiveR-CT, which relaxes conventional constraints on the objective and semantic reward, granting greater freedom for the policy to enhance diversity.<n>Our experiments demonstrate DiveR-CT's marked superiority over baselines by 1) generating data that perform better in various diversity metrics across different attack success rate levels, 2) better-enhancing resiliency in blue team models through safety tuning based on collected data, 3) allowing dynamic control of objective weights for reliable and controllable attack success rates, and 4) reducing susceptibility to reward overoptimization.
arXiv Detail & Related papers (2024-05-29T12:12:09Z) - Learning diverse attacks on large language models for robust red-teaming and safety tuning [126.32539952157083]
Red-teaming, or identifying prompts that elicit harmful responses, is a critical step in ensuring the safe deployment of large language models.<n>We show that even with explicit regularization to favor novelty and diversity, existing approaches suffer from mode collapse or fail to generate effective attacks.<n>We propose to use GFlowNet fine-tuning, followed by a secondary smoothing phase, to train the attacker model to generate diverse and effective attack prompts.
arXiv Detail & Related papers (2024-05-28T19:16:17Z) - Attack Prompt Generation for Red Teaming and Defending Large Language
Models [70.157691818224]
Large language models (LLMs) are susceptible to red teaming attacks, which can induce LLMs to generate harmful content.
We propose an integrated approach that combines manual and automatic methods to economically generate high-quality attack prompts.
arXiv Detail & Related papers (2023-10-19T06:15:05Z) - Downlink Power Allocation in Massive MIMO via Deep Learning: Adversarial
Attacks and Training [62.77129284830945]
This paper considers a regression problem in a wireless setting and shows that adversarial attacks can break the DL-based approach.
We also analyze the effectiveness of adversarial training as a defensive technique in adversarial settings and show that the robustness of DL-based wireless system against attacks improves significantly.
arXiv Detail & Related papers (2022-06-14T04:55:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.