Transfer Learning and Explainable AI for Brain Tumor Classification: A Study Using MRI Data from Bangladesh
- URL: http://arxiv.org/abs/2506.07228v1
- Date: Sun, 08 Jun 2025 17:26:13 GMT
- Title: Transfer Learning and Explainable AI for Brain Tumor Classification: A Study Using MRI Data from Bangladesh
- Authors: Shuvashis Sarker,
- Abstract summary: Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis.<n>This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh.<n>Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Brain tumors, regardless of being benign or malignant, pose considerable health risks, with malignant tumors being more perilous due to their swift and uncontrolled proliferation, resulting in malignancy. Timely identification is crucial for enhancing patient outcomes, particularly in nations such as Bangladesh, where healthcare infrastructure is constrained. Manual MRI analysis is arduous and susceptible to inaccuracies, rendering it inefficient for prompt diagnosis. This research sought to tackle these problems by creating an automated brain tumor classification system utilizing MRI data obtained from many hospitals in Bangladesh. Advanced deep learning models, including VGG16, VGG19, and ResNet50, were utilized to classify glioma, meningioma, and various brain cancers. Explainable AI (XAI) methodologies, such as Grad-CAM and Grad-CAM++, were employed to improve model interpretability by emphasizing the critical areas in MRI scans that influenced the categorization. VGG16 achieved the most accuracy, attaining 99.17%. The integration of XAI enhanced the system's transparency and stability, rendering it more appropriate for clinical application in resource-limited environments such as Bangladesh. This study highlights the capability of deep learning models, in conjunction with explainable artificial intelligence (XAI), to enhance brain tumor detection and identification in areas with restricted access to advanced medical technologies.
Related papers
- From Images to Insights: Transforming Brain Cancer Diagnosis with Explainable AI [1.939732664561742]
This study conveys the Bangladesh Brain Cancer MRI dataset, containing 6,056 MRI images organized into three categories: Brain Tumor, Brain Glioma, and Brain Menin.<n>DenseNet169 achieved exceptional results, with accuracy, precision, recall, and F1-Score all reaching 0.9983.
arXiv Detail & Related papers (2025-01-09T18:35:43Z) - SKIPNet: Spatial Attention Skip Connections for Enhanced Brain Tumor Classification [3.8233569758620063]
Early detection of brain tumors is essential for timely treatment, yet access to diagnostic facilities remains limited in remote areas.<n>This study proposes an automated deep learning model for brain tumor detection and classification using MRI data.<n>The model, incorporating spatial attention, achieved 96.90% accuracy, enhancing the aggregation of contextual information for better pattern recognition.
arXiv Detail & Related papers (2024-12-10T18:32:42Z) - Adult Glioma Segmentation in Sub-Saharan Africa using Transfer Learning on Stratified Finetuning Data [6.14919256198409]
Gliomas present diagnostic challenges in low- and middle-income countries, particularly in Sub-Saharan Africa.<n>This paper introduces a novel approach to glioma segmentation using transfer learning to address challenges in resource-limited regions with minimal and low-quality MRI data.
arXiv Detail & Related papers (2024-12-05T12:29:12Z) - Enhancing Brain Tumor Classification Using TrAdaBoost and Multi-Classifier Deep Learning Approaches [0.0]
Brain tumors pose a serious health threat due to their rapid growth and potential for metastasis.
This study aims to improve the efficiency and accuracy of brain tumor classification.
Our approach combines state-of-the-art deep learning algorithms, including the Vision Transformer (ViT), Capsule Neural Network (CapsNet), and convolutional neural networks (CNNs) such as ResNet-152 and VGG16.
arXiv Detail & Related papers (2024-10-31T07:28:06Z) - A Survey of Artificial Intelligence in Gait-Based Neurodegenerative Disease Diagnosis [51.07114445705692]
neurodegenerative diseases (NDs) traditionally require extensive healthcare resources and human effort for medical diagnosis and monitoring.<n>As a crucial disease-related motor symptom, human gait can be exploited to characterize different NDs.<n>The current advances in artificial intelligence (AI) models enable automatic gait analysis for NDs identification and classification.
arXiv Detail & Related papers (2024-05-21T06:44:40Z) - Cross-modality Guidance-aided Multi-modal Learning with Dual Attention
for MRI Brain Tumor Grading [47.50733518140625]
Brain tumor represents one of the most fatal cancers around the world, and is very common in children and the elderly.
We propose a novel cross-modality guidance-aided multi-modal learning with dual attention for addressing the task of MRI brain tumor grading.
arXiv Detail & Related papers (2024-01-17T07:54:49Z) - UniBrain: Universal Brain MRI Diagnosis with Hierarchical
Knowledge-enhanced Pre-training [66.16134293168535]
We propose a hierarchical knowledge-enhanced pre-training framework for the universal brain MRI diagnosis, termed as UniBrain.
Specifically, UniBrain leverages a large-scale dataset of 24,770 imaging-report pairs from routine diagnostics.
arXiv Detail & Related papers (2023-09-13T09:22:49Z) - A Novel SLCA-UNet Architecture for Automatic MRI Brain Tumor
Segmentation [0.0]
Brain tumor is one of the severe health complications which lead to decrease in life expectancy of the individuals.
Timely detection and prediction of brain tumors can be helpful to prevent death rates due to brain tumors.
Deep learning-based approaches have emerged as a promising solution to develop automated biomedical image exploration tools.
arXiv Detail & Related papers (2023-07-16T14:06:45Z) - Patched Diffusion Models for Unsupervised Anomaly Detection in Brain MRI [55.78588835407174]
We propose a method that reformulates the generation task of diffusion models as a patch-based estimation of healthy brain anatomy.
We evaluate our approach on data of tumors and multiple sclerosis lesions and demonstrate a relative improvement of 25.1% compared to existing baselines.
arXiv Detail & Related papers (2023-03-07T09:40:22Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - In-Line Image Transformations for Imbalanced, Multiclass Computer Vision
Classification of Lung Chest X-Rays [91.3755431537592]
This study aims to leverage a body of literature in order to apply image transformations that would serve to balance the lack of COVID-19 LCXR data.
Deep learning techniques such as convolutional neural networks (CNNs) are able to select features that distinguish between healthy and disease states.
This study utilizes a simple CNN architecture for high-performance multiclass LCXR classification at 94 percent accuracy.
arXiv Detail & Related papers (2021-04-06T02:01:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.