A Quantum Computational Perspective on Spread Complexity
- URL: http://arxiv.org/abs/2506.07257v2
- Date: Mon, 30 Jun 2025 09:25:45 GMT
- Title: A Quantum Computational Perspective on Spread Complexity
- Authors: Cameron Beetar, Eric L Graef, Jeff Murugan, Horatiu Nastase, Hendrik J R Van Zyl,
- Abstract summary: We establish a direct connection between spread complexity and quantum circuit complexity by demonstrating that spread complexity emerges as a limiting case of a circuit complexity framework built from two fundamental operations: time-evolution and superposition.<n>Our approach leverages a computational setup where unitary gates and beam-splitting operations generate target states, with the minimal cost of synthesis yielding a complexity measure that converges to spread complexity in the infinitesimal time-evolution limit.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We establish a direct connection between spread complexity and quantum circuit complexity by demonstrating that spread complexity emerges as a limiting case of a circuit complexity framework built from two fundamental operations: time-evolution and superposition. Our approach leverages a computational setup where unitary gates and beam-splitting operations generate target states, with the minimal cost of synthesis yielding a complexity measure that converges to spread complexity in the infinitesimal time-evolution limit. This perspective not only provides a physical interpretation of spread complexity but also offers computational advantages, particularly in scenarios where traditional methods like the Lanczos algorithm fail. We illustrate our framework with an explicit SU(2) example and discuss broader applications, including cases where return amplitudes are non-perturbative or divergent
Related papers
- The complexity of entanglement embezzlement [0.0]
We study the circuit complexity of embezzlement using sequences of states that enable arbitrary precision for the process.<n>We imply that circuit complexity acts as a physical obstruction to perfect embezzlement.
arXiv Detail & Related papers (2024-10-24T18:00:33Z) - Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
Given a quantum circuit containing d tunable RZ gates and G-d Clifford gates, can a learner perform purely classical inference to efficiently predict its linear properties?
We prove that the sample complexity scaling linearly in d is necessary and sufficient to achieve a small prediction error, while the corresponding computational complexity may scale exponentially in d.
We devise a kernel-based learning model capable of trading off prediction error and computational complexity, transitioning from exponential to scaling in many practical settings.
arXiv Detail & Related papers (2024-08-22T08:21:28Z) - Taming Quantum Time Complexity [45.867051459785976]
We show how to achieve both exactness and thriftiness in the setting of time complexity.
We employ a novel approach to the design of quantum algorithms based on what we call transducers.
arXiv Detail & Related papers (2023-11-27T14:45:19Z) - The Complexity of Being Entangled [0.0]
Nielsen's approach to quantum state complexity relates the minimal number of quantum gates required to prepare a state to the length of geodesics computed with a certain norm on the manifold of unitary transformations.
For a bipartite system, we investigate binding complexity, which corresponds to norms in which gates acting on a single subsystem are free of cost.
arXiv Detail & Related papers (2023-11-07T19:00:02Z) - Unitary Complexity and the Uhlmann Transformation Problem [41.67228730328207]
We introduce a framework for unitary synthesis problems, including notions of reductions and unitary complexity classes.
We use this framework to study the complexity of transforming one entangled state into another via local operations.
Our framework for unitary complexity thus provides new avenues for studying the computational complexity of many natural quantum information processing tasks.
arXiv Detail & Related papers (2023-06-22T17:46:39Z) - Bounds on quantum evolution complexity via lattice cryptography [0.0]
We address the difference between integrable and chaotic motion in quantum theory as manifested by the complexity of the corresponding evolution operators.
Complexity is understood here as the shortest geodesic distance between the time-dependent evolution operator and the origin within the group of unitaries.
arXiv Detail & Related papers (2022-02-28T16:20:10Z) - Forster Decomposition and Learning Halfspaces with Noise [60.691817861402676]
A Forster transform is an operation that turns a distribution into one with good anti-concentration properties.
We show that any distribution can be decomposed efficiently as a disjoint mixture of few distributions for which a Forster transform exists and can be computed efficiently.
arXiv Detail & Related papers (2021-07-12T17:00:59Z) - Detailed Account of Complexity for Implementation of Some Gate-Based
Quantum Algorithms [55.41644538483948]
In particular, some steps of the implementation, as state preparation and readout processes, can surpass the complexity aspects of the algorithm itself.
We present the complexity involved in the full implementation of quantum algorithms for solving linear systems of equations and linear system of differential equations.
arXiv Detail & Related papers (2021-06-23T16:33:33Z) - Beyond Worst-Case Analysis in Stochastic Approximation: Moment
Estimation Improves Instance Complexity [58.70807593332932]
We study oracle complexity of gradient based methods for approximation problems.
We focus on instance-dependent complexity instead of worst case complexity.
Our proposed algorithm and its analysis provide a theoretical justification for the success of moment estimation.
arXiv Detail & Related papers (2020-06-08T09:25:47Z) - On estimating the entropy of shallow circuit outputs [49.1574468325115]
Estimating the entropy of probability distributions and quantum states is a fundamental task in information processing.
We show that entropy estimation for distributions or states produced by either log-depth circuits or constant-depth circuits with gates of bounded fan-in and unbounded fan-out is at least as hard as the Learning with Errors problem.
arXiv Detail & Related papers (2020-02-27T15:32:08Z) - Aspects of The First Law of Complexity [0.0]
We investigate the first law of complexity proposed in arXiv:1903.04511, i.e., the variation of complexity when the target state is perturbed.
Based on Nielsen's geometric approach to quantum circuit complexity, we find the variation only depends on the end of the optimal circuit.
arXiv Detail & Related papers (2020-02-13T21:15:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.