Adultification Bias in LLMs and Text-to-Image Models
- URL: http://arxiv.org/abs/2506.07282v1
- Date: Sun, 08 Jun 2025 21:02:33 GMT
- Title: Adultification Bias in LLMs and Text-to-Image Models
- Authors: Jane Castleman, Aleksandra Korolova,
- Abstract summary: We study bias along axes of race and gender in young girls.<n>We focus on "adultification bias," a phenomenon in which Black girls are presumed to be more defiant, sexually intimate, and culpable than their White peers.
- Score: 55.02903075972816
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The rapid adoption of generative AI models in domains such as education, policing, and social media raises significant concerns about potential bias and safety issues, particularly along protected attributes, such as race and gender, and when interacting with minors. Given the urgency of facilitating safe interactions with AI systems, we study bias along axes of race and gender in young girls. More specifically, we focus on "adultification bias," a phenomenon in which Black girls are presumed to be more defiant, sexually intimate, and culpable than their White peers. Advances in alignment techniques show promise towards mitigating biases but vary in their coverage and effectiveness across models and bias types. Therefore, we measure explicit and implicit adultification bias in widely used LLMs and text-to-image (T2I) models, such as OpenAI, Meta, and Stability AI models. We find that LLMs exhibit explicit and implicit adultification bias against Black girls, assigning them harsher, more sexualized consequences in comparison to their White peers. Additionally, we find that T2I models depict Black girls as older and wearing more revealing clothing than their White counterparts, illustrating how adultification bias persists across modalities. We make three key contributions: (1) we measure a new form of bias in generative AI models, (2) we systematically study adultification bias across modalities, and (3) our findings emphasize that current alignment methods are insufficient for comprehensively addressing bias. Therefore, new alignment methods that address biases such as adultification are needed to ensure safe and equitable AI deployment.
Related papers
- Gender Bias in Text-to-Video Generation Models: A case study of Sora [63.064204206220936]
This study investigates the presence of gender bias in OpenAI's Sora, a text-to-video generation model.<n>We uncover significant evidence of bias by analyzing the generated videos from a diverse set of gender-neutral and stereotypical prompts.
arXiv Detail & Related papers (2024-12-30T18:08:13Z) - Survey of Bias In Text-to-Image Generation: Definition, Evaluation, and Mitigation [47.770531682802314]
Even simple prompts could cause T2I models to exhibit conspicuous social bias in generated images.
We present the first extensive survey on bias in T2I generative models.
We discuss how these works define, evaluate, and mitigate different aspects of bias.
arXiv Detail & Related papers (2024-04-01T10:19:05Z) - Protected group bias and stereotypes in Large Language Models [2.1122940074160357]
This paper investigates the behavior of Large Language Models (LLMs) in the domains of ethics and fairness.
We find bias across minoritized groups, but in particular in the domains of gender and sexuality, as well as Western bias.
arXiv Detail & Related papers (2024-03-21T00:21:38Z) - Bias in Generative AI [2.5830293457323266]
This study analyzed images generated by three popular generative artificial intelligence (AI) tools to investigate potential bias in AI generators.
All three AI generators exhibited bias against women and African Americans.
Women were depicted as younger with more smiles and happiness, while men were depicted as older with more neutral expressions and anger.
arXiv Detail & Related papers (2024-03-05T07:34:41Z) - Disclosure and Mitigation of Gender Bias in LLMs [64.79319733514266]
Large Language Models (LLMs) can generate biased responses.
We propose an indirect probing framework based on conditional generation.
We explore three distinct strategies to disclose explicit and implicit gender bias in LLMs.
arXiv Detail & Related papers (2024-02-17T04:48:55Z) - The Male CEO and the Female Assistant: Evaluation and Mitigation of Gender Biases in Text-To-Image Generation of Dual Subjects [58.27353205269664]
We propose the Paired Stereotype Test (PST) framework, which queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.<n>PST queries T2I models to depict two individuals assigned with male-stereotyped and female-stereotyped social identities.<n>Using PST, we evaluate two aspects of gender biases -- the well-known bias in gendered occupation and a novel aspect: bias in organizational power.
arXiv Detail & Related papers (2024-02-16T21:32:27Z) - Evaluating Large Language Models through Gender and Racial Stereotypes [0.0]
We conduct a quality comparative study and establish a framework to evaluate language models under the premise of two kinds of biases: gender and race.
We find out that while gender bias has reduced immensely in newer models, as compared to older ones, racial bias still exists.
arXiv Detail & Related papers (2023-11-24T18:41:16Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
We investigate how seniority impacts the degree of gender bias exhibited in pretrained neural generation models.
Our results show that GPT-2 amplifies bias by considering women as junior and men as senior more often than the ground truth in both domains.
These results suggest that NLP applications built using GPT-2 may harm women in professional capacities.
arXiv Detail & Related papers (2022-05-19T20:05:02Z) - Stereotype and Skew: Quantifying Gender Bias in Pre-trained and
Fine-tuned Language Models [5.378664454650768]
This paper proposes two intuitive metrics, skew and stereotype, that quantify and analyse the gender bias present in contextual language models.
We find evidence that gender stereotype correlates approximately negatively with gender skew in out-of-the-box models, suggesting that there is a trade-off between these two forms of bias.
arXiv Detail & Related papers (2021-01-24T10:57:59Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.