Decentralized Optimization on Compact Submanifolds by Quantized Riemannian Gradient Tracking
- URL: http://arxiv.org/abs/2506.07351v1
- Date: Mon, 09 Jun 2025 01:57:25 GMT
- Title: Decentralized Optimization on Compact Submanifolds by Quantized Riemannian Gradient Tracking
- Authors: Jun Chen, Lina Liu, Tianyi Zhu, Yong Liu, Guang Dai, Yunliang Jiang, Ivor W. Tsang,
- Abstract summary: This paper considers the problem of decentralized optimization on compact submanifolds.<n>We propose an algorithm where agents update variables using quantized variables.<n>To the best of our knowledge, this is the first algorithm to achieve an $mathcalO (1/K)$ convergence rate in the presence of quantization.
- Score: 45.147301546565316
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper considers the problem of decentralized optimization on compact submanifolds, where a finite sum of smooth (possibly non-convex) local functions is minimized by $n$ agents forming an undirected and connected graph. However, the efficiency of distributed optimization is often hindered by communication bottlenecks. To mitigate this, we propose the Quantized Riemannian Gradient Tracking (Q-RGT) algorithm, where agents update their local variables using quantized gradients. The introduction of quantization noise allows our algorithm to bypass the constraints of the accurate Riemannian projection operator (such as retraction), further improving iterative efficiency. To the best of our knowledge, this is the first algorithm to achieve an $\mathcal{O}(1/K)$ convergence rate in the presence of quantization, matching the convergence rate of methods without quantization. Additionally, we explicitly derive lower bounds on decentralized consensus associated with a function of quantization levels. Numerical experiments demonstrate that Q-RGT performs comparably to non-quantized methods while reducing communication bottlenecks and computational overhead.
Related papers
- Gradient Normalization Provably Benefits Nonconvex SGD under Heavy-Tailed Noise [60.92029979853314]
We investigate the roles of gradient normalization and clipping in ensuring the convergence of Gradient Descent (SGD) under heavy-tailed noise.
Our work provides the first theoretical evidence demonstrating the benefits of gradient normalization in SGD under heavy-tailed noise.
We introduce an accelerated SGD variant incorporating gradient normalization and clipping, further enhancing convergence rates under heavy-tailed noise.
arXiv Detail & Related papers (2024-10-21T22:40:42Z) - Decentralized Sum-of-Nonconvex Optimization [42.04181488477227]
We consider the optimization problem of the sum-of-non function, i.e., a guarantee function that is the average non-consensus number.
We propose an accelerated decentralized first-order algorithm by techniques of gradient, tracking into the rate, and multi-consensus.
arXiv Detail & Related papers (2024-02-04T05:48:45Z) - Stochastic Optimization for Non-convex Problem with Inexact Hessian
Matrix, Gradient, and Function [99.31457740916815]
Trust-region (TR) and adaptive regularization using cubics have proven to have some very appealing theoretical properties.
We show that TR and ARC methods can simultaneously provide inexact computations of the Hessian, gradient, and function values.
arXiv Detail & Related papers (2023-10-18T10:29:58Z) - Robust Stochastic Optimization via Gradient Quantile Clipping [6.2844649973308835]
We introduce a quant clipping strategy for Gradient Descent (SGD)
We use gradient new outliers as norm clipping chains.
We propose an implementation of the algorithm using Huberiles.
arXiv Detail & Related papers (2023-09-29T15:24:48Z) - Can Decentralized Stochastic Minimax Optimization Algorithms Converge
Linearly for Finite-Sum Nonconvex-Nonconcave Problems? [56.62372517641597]
Decentralized minimax optimization has been actively studied in the past few years due to its application in a wide range machine learning.
This paper develops two novel decentralized minimax optimization algorithms for the non-strongly-nonconcave problem.
arXiv Detail & Related papers (2023-04-24T02:19:39Z) - Quantization-Based Optimization: Alternative Stochastic Approximation of
Global Optimization [0.0]
We propose a global optimization algorithm based on quantizing the energy level of an objective function in an NP-hard problem.
Numerical experiments show that the proposed algorithm outperforms conventional learning methods in solving NP-hard optimization problems.
arXiv Detail & Related papers (2022-11-08T03:01:45Z) - Faster One-Sample Stochastic Conditional Gradient Method for Composite
Convex Minimization [61.26619639722804]
We propose a conditional gradient method (CGM) for minimizing convex finite-sum objectives formed as a sum of smooth and non-smooth terms.
The proposed method, equipped with an average gradient (SAG) estimator, requires only one sample per iteration. Nevertheless, it guarantees fast convergence rates on par with more sophisticated variance reduction techniques.
arXiv Detail & Related papers (2022-02-26T19:10:48Z) - On Accelerating Distributed Convex Optimizations [0.0]
This paper studies a distributed multi-agent convex optimization problem.
We show that the proposed algorithm converges linearly with an improved rate of convergence than the traditional and adaptive gradient-descent methods.
We demonstrate our algorithm's superior performance compared to prominent distributed algorithms for solving real logistic regression problems.
arXiv Detail & Related papers (2021-08-19T13:19:54Z) - Differentiable Annealed Importance Sampling and the Perils of Gradient
Noise [68.44523807580438]
Annealed importance sampling (AIS) and related algorithms are highly effective tools for marginal likelihood estimation.
Differentiability is a desirable property as it would admit the possibility of optimizing marginal likelihood as an objective.
We propose a differentiable algorithm by abandoning Metropolis-Hastings steps, which further unlocks mini-batch computation.
arXiv Detail & Related papers (2021-07-21T17:10:14Z) - Second-Order Guarantees in Centralized, Federated and Decentralized
Nonconvex Optimization [64.26238893241322]
Simple algorithms have been shown to lead to good empirical results in many contexts.
Several works have pursued rigorous analytical justification for studying non optimization problems.
A key insight in these analyses is that perturbations play a critical role in allowing local descent algorithms.
arXiv Detail & Related papers (2020-03-31T16:54:22Z) - A Hybrid-Order Distributed SGD Method for Non-Convex Optimization to
Balance Communication Overhead, Computational Complexity, and Convergence
Rate [28.167294398293297]
We propose a method of distributed gradient descent (SGD) with low communication load and computational complexity, and still fast.
To reduce the computational complexity in each iteration, the worker nodes approximate the directional derivatives with zeroth-order gradient estimation.
arXiv Detail & Related papers (2020-03-27T14:02:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.