Lightweight Joint Audio-Visual Deepfake Detection via Single-Stream Multi-Modal Learning Framework
- URL: http://arxiv.org/abs/2506.07358v1
- Date: Mon, 09 Jun 2025 02:13:04 GMT
- Title: Lightweight Joint Audio-Visual Deepfake Detection via Single-Stream Multi-Modal Learning Framework
- Authors: Kuiyuan Zhang, Wenjie Pei, Rushi Lan, Yifang Guo, Zhongyun Hua,
- Abstract summary: Deepfakes are AI-synthesized multimedia data that may be abused for spreading misinformation.<n>We propose a lightweight network for audio-visual deepfake detection via a single-stream multi-modal learning framework.<n>Our method is significantly lightweight with only 0.48M parameters, yet it achieves superiority in both uni-modal and multi-modal deepfakes.
- Score: 19.53717894228692
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deepfakes are AI-synthesized multimedia data that may be abused for spreading misinformation. Deepfake generation involves both visual and audio manipulation. To detect audio-visual deepfakes, previous studies commonly employ two relatively independent sub-models to learn audio and visual features, respectively, and fuse them subsequently for deepfake detection. However, this may underutilize the inherent correlations between audio and visual features. Moreover, utilizing two isolated feature learning sub-models can result in redundant neural layers, making the overall model inefficient and impractical for resource-constrained environments. In this work, we design a lightweight network for audio-visual deepfake detection via a single-stream multi-modal learning framework. Specifically, we introduce a collaborative audio-visual learning block to efficiently integrate multi-modal information while learning the visual and audio features. By iteratively employing this block, our single-stream network achieves a continuous fusion of multi-modal features across its layers. Thus, our network efficiently captures visual and audio features without the need for excessive block stacking, resulting in a lightweight network design. Furthermore, we propose a multi-modal classification module that can boost the dependence of the visual and audio classifiers on modality content. It also enhances the whole resistance of the video classifier against the mismatches between audio and visual modalities. We conduct experiments on the DF-TIMIT, FakeAVCeleb, and DFDC benchmark datasets. Compared to state-of-the-art audio-visual joint detection methods, our method is significantly lightweight with only 0.48M parameters, yet it achieves superiority in both uni-modal and multi-modal deepfakes, as well as in unseen types of deepfakes.
Related papers
- AVadCLIP: Audio-Visual Collaboration for Robust Video Anomaly Detection [57.649223695021114]
We present a novel weakly supervised framework that leverages audio-visual collaboration for robust video anomaly detection.<n>Our framework demonstrates superior performance across multiple benchmarks, with audio integration significantly boosting anomaly detection accuracy.
arXiv Detail & Related papers (2025-04-06T13:59:16Z) - Contextual Cross-Modal Attention for Audio-Visual Deepfake Detection and Localization [3.9440964696313485]
In the digital age, the emergence of deepfakes and synthetic media presents a significant threat to societal and political integrity.
Deepfakes based on multi-modal manipulation, such as audio-visual, are more realistic and pose a greater threat.
We propose a novel multi-modal attention framework based on recurrent neural networks (RNNs) that leverages contextual information for audio-visual deepfake detection.
arXiv Detail & Related papers (2024-08-02T18:45:01Z) - AV-Lip-Sync+: Leveraging AV-HuBERT to Exploit Multimodal Inconsistency
for Video Deepfake Detection [32.502184301996216]
Multimodal manipulations (also known as audio-visual deepfakes) make it difficult for unimodal deepfake detectors to detect forgeries in multimedia content.
Previous methods mainly adopt uni-modal video forensics and use supervised pre-training for forgery detection.
This study proposes a new method based on a multi-modal self-supervised-learning (SSL) feature extractor.
arXiv Detail & Related papers (2023-11-05T18:35:03Z) - AVTENet: Audio-Visual Transformer-based Ensemble Network Exploiting
Multiple Experts for Video Deepfake Detection [53.448283629898214]
The recent proliferation of hyper-realistic deepfake videos has drawn attention to the threat of audio and visual forgeries.
Most previous work on detecting AI-generated fake videos only utilize visual modality or audio modality.
We propose an Audio-Visual Transformer-based Ensemble Network (AVTENet) framework that considers both acoustic manipulation and visual manipulation.
arXiv Detail & Related papers (2023-10-19T19:01:26Z) - MIS-AVoiDD: Modality Invariant and Specific Representation for
Audio-Visual Deepfake Detection [4.659427498118277]
A novel kind of deepfakes has emerged with either audio or visual modalities manipulated.
Existing multimodal deepfake detectors are often based on the fusion of the audio and visual streams from the video.
In this paper, we tackle the problem at the representation level to aid the fusion of audio and visual streams for multimodal deepfake detection.
arXiv Detail & Related papers (2023-10-03T17:43:24Z) - DF-TransFusion: Multimodal Deepfake Detection via Lip-Audio
Cross-Attention and Facial Self-Attention [13.671150394943684]
We present a novel multi-modal audio-video framework designed to concurrently process audio and video inputs for deepfake detection tasks.
Our model capitalizes on lip synchronization with input audio through a cross-attention mechanism while extracting visual cues via a fine-tuned VGG-16 network.
arXiv Detail & Related papers (2023-09-12T18:37:05Z) - Text-to-feature diffusion for audio-visual few-shot learning [59.45164042078649]
Few-shot learning from video data is a challenging and underexplored, yet much cheaper, setup.
We introduce a unified audio-visual few-shot video classification benchmark on three datasets.
We show that AV-DIFF obtains state-of-the-art performance on our proposed benchmark for audio-visual few-shot learning.
arXiv Detail & Related papers (2023-09-07T17:30:36Z) - Improving Audio-Visual Speech Recognition by Lip-Subword Correlation
Based Visual Pre-training and Cross-Modal Fusion Encoder [58.523884148942166]
We propose two novel techniques to improve audio-visual speech recognition (AVSR) under a pre-training and fine-tuning training framework.
First, we explore the correlation between lip shapes and syllable-level subword units in Mandarin to establish good frame-level syllable boundaries from lip shapes.
Next, we propose an audio-guided cross-modal fusion encoder (CMFE) neural network to utilize main training parameters for multiple cross-modal attention layers.
arXiv Detail & Related papers (2023-08-14T08:19:24Z) - Visually-Guided Sound Source Separation with Audio-Visual Predictive
Coding [57.08832099075793]
Visually-guided sound source separation consists of three parts: visual feature extraction, multimodal feature fusion, and sound signal processing.
This paper presents audio-visual predictive coding (AVPC) to tackle this task in parameter harmonizing and more effective manner.
In addition, we develop a valid self-supervised learning strategy for AVPC via co-predicting two audio-visual representations of the same sound source.
arXiv Detail & Related papers (2023-06-19T03:10:57Z) - Leveraging Uni-Modal Self-Supervised Learning for Multimodal
Audio-Visual Speech Recognition [23.239078852797817]
We leverage uni-modal self-supervised learning to promote the multimodal audio-visual speech recognition (AVSR)
In particular, we first train audio and visual encoders on a large-scale uni-modal dataset, then we integrate components of both encoders into a larger multimodal framework.
Our model is experimentally validated on both word-level and sentence-level AVSR tasks.
arXiv Detail & Related papers (2022-02-24T15:12:17Z) - Emotions Don't Lie: An Audio-Visual Deepfake Detection Method Using
Affective Cues [75.1731999380562]
We present a learning-based method for detecting real and fake deepfake multimedia content.
We extract and analyze the similarity between the two audio and visual modalities from within the same video.
We compare our approach with several SOTA deepfake detection methods and report per-video AUC of 84.4% on the DFDC and 96.6% on the DF-TIMIT datasets.
arXiv Detail & Related papers (2020-03-14T22:07:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.