Beyond the Sentence: A Survey on Context-Aware Machine Translation with Large Language Models
- URL: http://arxiv.org/abs/2506.07583v1
- Date: Mon, 09 Jun 2025 09:27:00 GMT
- Title: Beyond the Sentence: A Survey on Context-Aware Machine Translation with Large Language Models
- Authors: Ramakrishna Appicharla, Baban Gain, Santanu Pal, Asif Ekbal,
- Abstract summary: This work presents a literature review of context-aware translation with large language models (LLMs)<n>The existing works utilise prompting and fine-tuning approaches, with few focusing on automatic post-editing and creating translation agents for context-aware machine translation.
- Score: 19.76204414964156
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Despite the popularity of the large language models (LLMs), their application to machine translation is relatively underexplored, especially in context-aware settings. This work presents a literature review of context-aware translation with LLMs. The existing works utilise prompting and fine-tuning approaches, with few focusing on automatic post-editing and creating translation agents for context-aware machine translation. We observed that the commercial LLMs (such as ChatGPT and Tower LLM) achieved better results than the open-source LLMs (such as Llama and Bloom LLMs), and prompt-based approaches serve as good baselines to assess the quality of translations. Finally, we present some interesting future directions to explore.
Related papers
- Bridging the Linguistic Divide: A Survey on Leveraging Large Language Models for Machine Translation [33.08089616645845]
Large Language Models (LLMs) have reshaped the landscape of machine translation (MT)<n>We analyze techniques such as few-shot prompting, cross-lingual transfer, and parameter-efficient fine-tuning.<n>We discuss persistent challenges - such as hallucinations, evaluation inconsistencies, and inherited biases.
arXiv Detail & Related papers (2025-04-02T17:26:40Z) - Lost in Literalism: How Supervised Training Shapes Translationese in LLMs [51.04435855143767]
Large language models (LLMs) have achieved remarkable success in machine translation.<n>However, translationese, characterized by overly literal and unnatural translations, remains a persistent challenge.<n>We introduce methods to mitigate these biases, including polishing golden references and filtering unnatural training instances.
arXiv Detail & Related papers (2025-03-06T12:14:45Z) - Context-Aware or Context-Insensitive? Assessing LLMs' Performance in Document-Level Translation [10.174848090916669]
Large language models (LLMs) are increasingly strong contenders in machine translation.<n>We focus on document-level translation, where some words cannot be translated without context from outside the sentence.
arXiv Detail & Related papers (2024-10-18T11:52:10Z) - What do Large Language Models Need for Machine Translation Evaluation? [12.42394213466485]
Large language models (LLMs) can achieve results comparable to fine-tuned multilingual pre-trained language models.
This paper explores what translation information, such as the source, reference, translation errors and annotation guidelines, is needed for LLMs to evaluate machine translation quality.
arXiv Detail & Related papers (2024-10-04T09:50:45Z) - TasTe: Teaching Large Language Models to Translate through Self-Reflection [82.83958470745381]
Large language models (LLMs) have exhibited remarkable performance in various natural language processing tasks.
We propose the TasTe framework, which stands for translating through self-reflection.
The evaluation results in four language directions on the WMT22 benchmark reveal the effectiveness of our approach compared to existing methods.
arXiv Detail & Related papers (2024-06-12T17:21:21Z) - Building Accurate Translation-Tailored LLMs with Language Aware Instruction Tuning [57.323716555996114]
Off-target translation remains an unsolved problem, especially for low-resource languages.
Recent works have either designed advanced prompting strategies to highlight the functionality of translation instructions or exploited the in-context learning ability of LLMs.
In this work, we design a two-stage fine-tuning algorithm to improve the instruction-following ability (especially the translation direction) of LLMs.
arXiv Detail & Related papers (2024-03-21T13:47:40Z) - Machine Translation with Large Language Models: Prompt Engineering for
Persian, English, and Russian Directions [0.0]
Generative large language models (LLMs) have demonstrated exceptional proficiency in various natural language processing (NLP) tasks.
We conducted an investigation into two popular prompting methods and their combination, focusing on cross-language combinations of Persian, English, and Russian.
arXiv Detail & Related papers (2024-01-16T15:16:34Z) - Speech Translation with Large Language Models: An Industrial Practice [64.5419534101104]
We introduce LLM-ST, a novel and effective speech translation model constructed upon a pre-trained large language model (LLM)
By integrating the large language model (LLM) with a speech encoder and employing multi-task instruction tuning, LLM-ST can produce accurate timestamped transcriptions and translations.
Through rigorous experimentation on English and Chinese datasets, we showcase the exceptional performance of LLM-ST.
arXiv Detail & Related papers (2023-12-21T05:32:49Z) - Exploring Human-Like Translation Strategy with Large Language Models [93.49333173279508]
Large language models (LLMs) have demonstrated impressive capabilities in general scenarios.
This work proposes the MAPS framework, which stands for Multi-Aspect Prompting and Selection.
We employ a selection mechanism based on quality estimation to filter out noisy and unhelpful knowledge.
arXiv Detail & Related papers (2023-05-06T19:03:12Z) - Multilingual Machine Translation with Large Language Models: Empirical Results and Analysis [103.89753784762445]
Large language models (LLMs) have demonstrated remarkable potential in handling multilingual machine translation (MMT)
This paper systematically investigates the advantages and challenges of LLMs for MMT.
We thoroughly evaluate eight popular LLMs, including ChatGPT and GPT-4.
arXiv Detail & Related papers (2023-04-10T15:51:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.