ProARD: progressive adversarial robustness distillation: provide wide range of robust students
- URL: http://arxiv.org/abs/2506.07666v2
- Date: Tue, 05 Aug 2025 08:20:00 GMT
- Title: ProARD: progressive adversarial robustness distillation: provide wide range of robust students
- Authors: Seyedhamidreza Mousavi, Seyedali Mousavi, Masoud Daneshtalab,
- Abstract summary: Adrial Robustness Distillation (ARD) has emerged as an effective method to enhance the robustness of lightweight deep neural networks against adversarial attacks.<n>Current approaches require training a new student network from scratch to meet specific constraints, leading to substantial computational costs and increased CO2 emissions.<n>This paper proposes Progressive Adrial Robustness Distillation (ProARD), enabling the efficient one-time training of a dynamic network.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Adversarial Robustness Distillation (ARD) has emerged as an effective method to enhance the robustness of lightweight deep neural networks against adversarial attacks. Current ARD approaches have leveraged a large robust teacher network to train one robust lightweight student. However, due to the diverse range of edge devices and resource constraints, current approaches require training a new student network from scratch to meet specific constraints, leading to substantial computational costs and increased CO2 emissions. This paper proposes Progressive Adversarial Robustness Distillation (ProARD), enabling the efficient one-time training of a dynamic network that supports a diverse range of accurate and robust student networks without requiring retraining. We first make a dynamic deep neural network based on dynamic layers by encompassing variations in width, depth, and expansion in each design stage to support a wide range of architectures. Then, we consider the student network with the largest size as the dynamic teacher network. ProARD trains this dynamic network using a weight-sharing mechanism to jointly optimize the dynamic teacher network and its internal student networks. However, due to the high computational cost of calculating exact gradients for all the students within the dynamic network, a sampling mechanism is required to select a subset of students. We show that random student sampling in each iteration fails to produce accurate and robust students.
Related papers
- Network Sparsity Unlocks the Scaling Potential of Deep Reinforcement Learning [57.3885832382455]
We show that introducing static network sparsity alone can unlock further scaling potential beyond dense counterparts with state-of-the-art architectures.<n>Our analysis reveals that, in contrast to naively scaling up dense DRL networks, such sparse networks achieve both higher parameter efficiency for network expressivity.
arXiv Detail & Related papers (2025-06-20T17:54:24Z) - A Graph Transformer-Driven Approach for Network Robustness Learning [27.837847091520842]
This paper proposes a novel versatile and unified robustness learning approach via graph transformer (NRL-GT)
NRL-GT accomplishes the task of controllability robustness learning and connectivity robustness learning from multiple aspects.
It is also able to deal with complex networks of different size with low learning error and high efficiency.
arXiv Detail & Related papers (2023-06-12T07:34:21Z) - PAD-Net: An Efficient Framework for Dynamic Networks [72.85480289152719]
Common practice in implementing dynamic networks is to convert the given static layers into fully dynamic ones.
We propose a partially dynamic network, namely PAD-Net, to transform the redundant dynamic parameters into static ones.
Our method is comprehensively supported by large-scale experiments with two typical advanced dynamic architectures.
arXiv Detail & Related papers (2022-11-10T12:42:43Z) - Improving Ensemble Distillation With Weight Averaging and Diversifying
Perturbation [22.87106703794863]
It motivates distilling knowledge from the ensemble teacher into a smaller student network.
We propose a weight averaging technique where a student with multipleworks is trained to absorb the functional diversity of ensemble teachers.
We also propose a perturbation strategy that seeks inputs from which the diversities of teachers can be better transferred to the student.
arXiv Detail & Related papers (2022-06-30T06:23:03Z) - Excess Risk of Two-Layer ReLU Neural Networks in Teacher-Student
Settings and its Superiority to Kernel Methods [58.44819696433327]
We investigate the risk of two-layer ReLU neural networks in a teacher regression model.
We find that the student network provably outperforms any solution methods.
arXiv Detail & Related papers (2022-05-30T02:51:36Z) - Dynamic Slimmable Network [105.74546828182834]
We develop a dynamic network slimming regime named Dynamic Slimmable Network (DS-Net)
Our DS-Net is empowered with the ability of dynamic inference by the proposed double-headed dynamic gate.
It consistently outperforms its static counterparts as well as state-of-the-art static and dynamic model compression methods.
arXiv Detail & Related papers (2021-03-24T15:25:20Z) - All at Once Network Quantization via Collaborative Knowledge Transfer [56.95849086170461]
We develop a novel collaborative knowledge transfer approach for efficiently training the all-at-once quantization network.
Specifically, we propose an adaptive selection strategy to choose a high-precision enquoteteacher for transferring knowledge to the low-precision student.
To effectively transfer knowledge, we develop a dynamic block swapping method by randomly replacing the blocks in the lower-precision student network with the corresponding blocks in the higher-precision teacher network.
arXiv Detail & Related papers (2021-03-02T03:09:03Z) - Efficient Crowd Counting via Structured Knowledge Transfer [122.30417437707759]
Crowd counting is an application-oriented task and its inference efficiency is crucial for real-world applications.
We propose a novel Structured Knowledge Transfer framework to generate a lightweight but still highly effective student network.
Our models obtain at least 6.5$times$ speed-up on an Nvidia 1080 GPU and even achieve state-of-the-art performance.
arXiv Detail & Related papers (2020-03-23T08:05:41Z) - Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve
Adversarial Robustness [79.47619798416194]
Learn2Perturb is an end-to-end feature perturbation learning approach for improving the adversarial robustness of deep neural networks.
Inspired by the Expectation-Maximization, an alternating back-propagation training algorithm is introduced to train the network and noise parameters consecutively.
arXiv Detail & Related papers (2020-03-02T18:27:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.